Skip to main content

Advertisement

Log in

Only SETBP1 hotspot mutations are associated with refractory disease in myeloid malignancies

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

SETBP1 mutations have been established as a diagnostic marker in myeloid malignancies and are associated with inferior survival. Since there is limited data on their clinical impact and stability during disease progression, we sought to investigate the relationship between SETBP1 mutations and disease evolution.

Methods

Bidirectional Sanger sequencing of the SETBP1 gene was performed for 442 unselected patients with World Health Organization (WHO) defined myeloid disorders. Follow-up analysis was performed on samples from 123/442 patients to investigate SETBP1 mutation dynamics. Targeted deep next-generation sequencing for a panel of 30 leukemia-associated genes was established to study SETBP1 cooperating mutations.

Results

10/442 patients (2.3%) had SETBP1 hotspot mutations (MDS/MPN, n = 7, sAML, n = 3), whereas four patients (1%) had SETBP1 non-hotspot mutations (MPN, n = 1; MDS, n = 2; sAML, n = 1). The median overall survival for patients with SETBP1 hotspot mutations, SETBP1 non-hotspot mutations, and SETBP1 wild type was 14 (range 0–31), 50 (range 0–71), and 47 months (range 0–402), respectively. In Kaplan–Meier analysis, SETBP1 hotspot mutations were significantly associated with reduced overall survival compared to SETBP1 non-hotspot mutations and the SETBP1 wild type (p < 0.001). All 10 patients with SETBP1 hotspot mutations died from relapse or disease progression. Three of four patients with SETBP1 non-hotspot mutations are alive with stable disease. Cooperating CSF3R and TET2 mutations were most frequently observed in patients with SETBP1 hotspot mutations.

Conclusions

Patients with SETBP1 hotspot mutations suffered from aggressive disease with rapid evolution and inferior overall survival. Patients with SETBP1 non-hotspot mutations had less aggressive disease and a more favorable prognosis. Diagnostic screens for SETBP1 hotspot mutations may help identifying this dismal patient group and treat them in multicenter clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuna-Hidalgo R, Deriziotis P, Steehouwer M, Gilissen C, Graham SA, van Dam S et al (2017) Overlapping SETBP1 gain-of-function mutations in Schinzel–Giedion syndrome and hematologic malignancies. PLoS Genet 13(3):e1006683

    Article  PubMed  PubMed Central  Google Scholar 

  • Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    Article  CAS  PubMed  Google Scholar 

  • Brown FC, Cifani P, Drill E, He J, Still E, Zhong S et al (2017) Genomics of primary chemoresistance and remission induction failure in paediatric and adult acute myeloid leukaemia. Br J Haematol 176(1):86–91

    Article  CAS  PubMed  Google Scholar 

  • Chen TC, Hou HA, Chou WC, Tang JL, Kuo YY, Chen CY et al (2014) Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer J 4:e177

    Article  PubMed  PubMed Central  Google Scholar 

  • Cristobal I, Blanco FJ, Garcia-Orti L, Marcotegui N, Vicente C, Rifon J et al (2010) SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood 115(3):615–625

    Article  CAS  PubMed  Google Scholar 

  • Damm F, Itzykson R, Kosmider O, Droin N, Renneville A, Chesnais V et al (2013) SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. Leukemia 27(6):1401–1403

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Mercado M, Pellagatti A, Di Genua C, Larrayoz MJ, Winkelmann N, Aranaz P et al (2013) Mutations in SETBP1 are recurrent in myelodysplastic syndromes and often coexist with cytogenetic markers associated with disease progression. Br J Haematol 163(2):235–239

    CAS  PubMed  Google Scholar 

  • Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J et al (2016) RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 30(11):2282

    Article  CAS  PubMed  Google Scholar 

  • Heuser M, Schlarmann C, Dobbernack V, Panagiota V, Wiehlmann L, Walter C et al (2014) Genetic characterization of acquired aplastic anemia by targeted sequencing. Haematologica 99(9):e165–e167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M et al (2010) De novo mutations of SETBP1 cause Schinzel–Giedion syndrome. Nat Genet 42(6):483–485

    Article  CAS  PubMed  Google Scholar 

  • Hou HA, Kuo YY, Tang JL, Chou WC, Yao M, Lai YJ et al (2014) Clinical implications of the SETBP1 mutation in patients with primary myelodysplastic syndrome and its stability during disease progression. Am J Hematol 89(2):181–186

    Article  CAS  PubMed  Google Scholar 

  • Inoue D, Kitaura J, Matsui H, Hou HA, Chou WC, Nagamachi A et al (2015) SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia 29(4):847–857

    Article  CAS  PubMed  Google Scholar 

  • Laborde RR, Patnaik MM, Lasho TL, Finke CM, Hanson CA, Knudson RA et al (2013) SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML. Leukemia 27(10):2100–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin TL, Nagata Y, Kao HW, Sanada M, Okuno Y, Huang CF et al (2014) Clonal leukemic evolution in myelodysplastic syndromes with TET2 and IDH1/2 mutations. Haematologica 99(1):28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, Okuno Y et al (2013) Somatic SETBP1 mutations in myeloid malignancies. Nat Genet 45(8):942–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern W, Gambacorti-Passerini C et al (2013) SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations. Leukemia 27(9):1852–1860

    Article  CAS  PubMed  Google Scholar 

  • Nguyen N, Vishwakarma BA, Oakley K, Han Y, Przychodzen B, Maciejewski JP et al (2016) Myb expression is critical for myeloid leukemia development induced by Setbp1 activation. Oncotarget 7(52):86300–86312

    PubMed  PubMed Central  Google Scholar 

  • Oakley K, Han Y, Vishwakarma BA, Chu S, Bhatia R, Gudmundsson KO et al (2012) Setbp1 promotes the self-renewal of murine myeloid progenitors via activation of Hoxa9 and Hoxa10. Blood 119(25):6099–6108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A et al (2012) Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet 45(1):18–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Ping N, Sun A, Song Y, Wang Q, Yin J, Cheng W et al (2017) Exome sequencing identifies highly recurrent somatic GATA2 and CEBPA mutations in acute erythroid leukemia. Leukemia 31(1):195–202

    Article  CAS  PubMed  Google Scholar 

  • Rinke J, Schaefer V, Schmidt M, Ziermann J, Kohlmann A, Hochhaus A et al (2013) Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA. Clin Chem 59(8):1238–1250

    Article  CAS  PubMed  Google Scholar 

  • Schaefer V, Ernst J, Rinke J, Winkelmann N, Beck JF, Hochhaus A et al (2016) EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 142(7):1641–1650

    Article  CAS  Google Scholar 

  • Schinzel A, Giedion A (1978) A syndrome of severe midface retraction, multiple skull anomalies, clubfeet, and cardiac and renal malformations in sibs. Am J Med Genet 1(4):361–375

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Rinke J, Schaefer V, Schnittger S, Kohlmann A, Obstfelder E et al (2014) Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 28(12):2292–2299

    Article  CAS  PubMed  Google Scholar 

  • Stieglitz E, Troup CB, Gelston LC, Haliburton J, Chow ED, Yu KB et al (2015) Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood 125(3):516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thol F, Suchanek KJ, Koenecke C, Stadler M, Platzbecker U, Thiede C et al (2013) SETBP1 mutation analysis in 944 patients with MDS and AML. Leukemia 27(10):2072–2075

    Article  CAS  PubMed  Google Scholar 

  • Uttarkar S, Dasse E, Coulibaly A, Steinmann S, Jakobs A, Schomburg C et al (2016) Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 127(9):1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Verloes A, Moes D, Palumbo L, Elmer C, Francois A, Bricteux G (1993) Schinzel–Giedion syndrome. Eur J Pediatr 152(5):421–423

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma BA, Nguyen N, Makishima H, Hosono N, Gudmundsson KO, Negi V et al (2016) Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development. Leukemia 30(1):200–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Mrs. Anja Waldau is gratefully acknowledged. In previous research projects on SETBP1, NW was supported by the Dr. Mildred Scheel Stiftung for Krebsforschung (Bonn, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ernst.

Ethics declarations

Funding

This study was funded by the Interdisciplinary Center for Clinical Research (Universitätsklinikum Jena, Germany) with the Junior Project Grant No. J43.

Conflict of interest

All authors declare that they have no competing interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkelmann, N., Schäfer, V., Rinke, J. et al. Only SETBP1 hotspot mutations are associated with refractory disease in myeloid malignancies. J Cancer Res Clin Oncol 143, 2511–2519 (2017). https://doi.org/10.1007/s00432-017-2518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-017-2518-z

Keywords

Navigation