Skip to main content
Log in

Identification of a prognostic 5-Gene expression signature for gastric cancer

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Gastric cancer (GC) is a major tumor throughout the world with remaining high morbidity and mortality. The aim is to generate a gene model to assess the prognoses risk of patients with GC.

Methods

Gene expression profiling of gastric cancer patients, GSE62254 (300 samples) and GSE26253 (432 samples), was downloaded from Gene Expression Omnibus (GEO) database. Univariate survival analysis and LASSO (Least Absolute Shrinkage and Selectionator operator) (1000 iterations) of differentially expressed genes in GSE62254 was assessed using survival and glmnet in R package, respectively. Kaplan–Meier analysis on the clustering algorithm from each regression model was performed to calculate the influence to the prognosis. Random samples in GSE26253 were analyzed in multivariate and univariate survival analysis for one thousand times to calculate statistical stability of each regression model.

Results

A total of 854 Genes were identified differentially expressed in GSE62254, among which 367 Genes were found influencing the prognoses. Six gene clusters were selected with good stability. Hereinto, five or more genes in 11-Gene model, TRPC1, SGCE, TNFRSF11A, LRRN1, HLF, CYS1, PPP1R14A, NOV, NBEA, CES1 and RGN, was available to evaluate the prognostic risk of GC patients in GSE26253 (P = 0.00445). The validity and reliability was validated.

Conclusion

In conclusion, we successfully generated a stable 5-Gene model, which could be utilized to predict prognosis of GC patients and would contribute to postoperational treatment and follow-up strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Catalano V et al (2009) Gastric cancer. Crit Rev Oncol Hematol 71(2):127–164

    Article  PubMed  Google Scholar 

  • Chen W et al (2015) The updated incidences and mortalities of major cancers in China, 2011. Chin J Cancer 34(11):502–507

    CAS  PubMed  Google Scholar 

  • Chen T, Xu XY, Zhou PH (2016) Emerging molecular classifications and therapeutic implications for gastric cancer. Chin J Cancer 35(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Cristescu R et al (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21(5):449–456

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  PubMed  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56(2):337–344

    Article  CAS  PubMed  Google Scholar 

  • Hooi WC (2009) The role of ROS-mediated ERK and JNK activation in the induction of autophagy and apoptosis in tumour cells by a novel small molecule compound. Ph D

  • Hossain MS et al (2008) N-MYC promotes cell proliferation through a direct transactivation of neuronal leucine-rich repeat protein-1 (NLRR1) gene in neuroblastoma. Oncogene 27(46):6075–6082

    Article  CAS  PubMed  Google Scholar 

  • Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  • Jia ZF et al (2016) CD24-Genetic variants contribute to overall survival in patients with gastric cancer. World J Gastroenterol 22(7):2373–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy NJ, Davis RJ (2003) Role of JNK in tumor development. Cell Cycle 2(3):199–201

    CAS  PubMed  Google Scholar 

  • Lee J et al (2014) Nanostring-based multigene assay to predict recurrence for gastric cancer patients after surgery. PLoS ONE 9(3):e90133

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X et al (2015) Detection and clinical significance of COX-2-Gene SNPs in gastric cancer. Cell Biochem Biophys 72(3):657–660

    Article  CAS  PubMed  Google Scholar 

  • Mathers C, Fat DM, Boerma JT (2008) The global burden of disease: 2004 update. World Health Organization, Geneva

    Book  Google Scholar 

  • McAvoy S et al (2007) Non-random inactivation of large common fragile site genes in different cancers. Cytogenet Genome Res 118(2–4):260–269

    Article  CAS  PubMed  Google Scholar 

  • O’Neal J et al (2009) Neurobeachin (NBEA) is a target of recurrent interstitial deletions at 13q13 in patients with MGUS and multiple myeloma. Exp Hematol 37(2):234–244

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Quigley J, Moreau T (1986) Cox’s regression model: computing a goodness of fit statistic. Comput Methods Progr Biomed 22(3):253–256

    Article  Google Scholar 

  • Paria BC et al (2003) Tumor necrosis factor-alpha induces nuclear factor-kappaB-dependent TRPC1 expression in endothelial cells. J Biol Chem 278(39):37195–37203

    Article  CAS  PubMed  Google Scholar 

  • Skierucha M et al (2016) Molecular alterations in gastric cancer with special reference to the early-onset subtype. World J Gastroenterol 22(8):2460–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sordillo EM, Pearse RN (2003) RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer 97(3 Suppl):802–812

    Article  PubMed  Google Scholar 

  • Stahl P et al (2015) Heterogeneity of amplification of HER2, EGFR, CCND1 and MYC in gastric cancer. BMC Gastroenterol 15:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veeriah S et al (2014) High-throughput time-resolved FRET reveals Akt/PKB activation as a poor prognostic marker in breast cancer. Cancer Res 74(18):4983–4995

    Article  CAS  PubMed  Google Scholar 

  • von dem Knesebeck A et al (2012) RANK (TNFRSF11A) is epigenetically inactivated and induces apoptosis in gliomas. Neoplasia 14(6):526–534

    Article  Google Scholar 

  • Wang T et al (2016) Interleukin (IL)-4-590C>T polymorphism is not associated with the susceptibility of gastric cancer: an updated meta-analysis. Ann Med Surg (Lond) 9:1–5

    Article  Google Scholar 

  • Xu CJ et al (2012a) Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models. Int J Radiat Oncol Biol Phys 82(4):e677–e684

    Article  PubMed  Google Scholar 

  • Xu CJ et al (2012b) Statistical validation of normal tissue complication probability models. Int J Radiat Oncol Biol Phys 84(1):e123–e129

    Article  PubMed  Google Scholar 

  • Tibshirani R (1997) The lasso method for variable selection in the cox model. Stat Med 16:385–395

    Article  CAS  PubMed  Google Scholar 

  • Yang L (2006) Incidence and mortality of gastric cancer in China. World J Gastroenterol 12(1):17–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Takano Y, Zheng HC (2012) The pathobiological features of gastrointestinal cancers (review). Oncol Lett 3(5):961–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zabaleta J (2012) Multifactorial etiology of gastric cancer. Methods Mol Biol 863:411–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H et al (2015) Cancer survival in China, 2003-2005: a population-based study. Int J Cancer 136(8):1921–1930

    Article  CAS  PubMed  Google Scholar 

  • Zhi-Gao XU et al (2012) Expression and clinical significance of HER-2 and NF-κB in gastric cancer. Prog Mod Biomed 21:004

    Google Scholar 

  • Zhou F et al (2016) Associations of potentially functional variants in IL-6, JAKs and STAT3 with gastric cancer risk in an eastern Chinese population. Oncotarget

Download references

Funding

This study was supported by the SUMHS collaborative innovation focus (HMCI-16-11-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing-Yin Yang or Qian-Ping Li.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Jun-Yi Hou, Yu-Gang Wang and Shi-Jie Ma: co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, JY., Wang, YG., Ma, SJ. et al. Identification of a prognostic 5-Gene expression signature for gastric cancer. J Cancer Res Clin Oncol 143, 619–629 (2017). https://doi.org/10.1007/s00432-016-2324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-016-2324-z

Keywords

Navigation