Skip to main content

Advertisement

Log in

Evaluation of a bacteriochlorin-based photosensitizer’s anti-tumor effect in vitro and in vivo

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Bacteriochlorin derivatives are promising photosensitive agents for photodynamic therapy (PDT) of tumors. In the current study, the photodynamic activity of a novel bacteriochlorin derivative, cis-2, 3, 12, 13-tetracarboxymethyl-5, 10, 15, 20-tetraphenyl bacteriochlorin (TCTB), was evaluated both in vitro and in vivo.

Methods

Physicochemical characteristics of the novel photosensitizer were measured. The efficiency of TCTB-PDT in vitro was analyzed by MTT assay, clonogenic assay and in situ trypan blue exclusion test. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The accumulation of TCTB in human malignant tumor cells was measured by fluorescence spectrometer, and the pathway of cell death was analyzed by flow cytometry. S180 tumor model was used to evaluate the anti-tumor effects of TCTB-PDT. And histopathological study was also used to confirm the anti-tumor effect.

Results

TCTB shows a singlet oxygen quantum yield of 0.56 and displays a characteristic long wavelength absorption peak at 732 nm. The accumulation of TCTB increased in time-dependent manner, and it was found in cytoplasm and nuclear membranes. In vitro PDT using TCTB and Nd:YAG laser showed drug concentration-, laser dose-dependent cytotoxicity to human esophageal cancer Eca-109 cells. In mice bearing osteosarcoma S180 tumors, the combined use of 10 mg/kg TCTB and 120 J/cm2 showed superior anti-tumor activity. Histology examination of tumor tissues revealed that PDT using TCTB and the Nd:YAG laser induced tumor cells shrunken and necrotic.

Conclusion

In in vitro and in vivo studies, we found that TCTB has excellent anti-tumor effect. It suggests that TCTB is a potential photosensitizer of PDT for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison RR, Moghissi K (2013) Photodynamic Therapy (PDT): PDT Mechanisms. Clin endosc 46(1):24–29. doi:10.5946/ce.2013.46.1.24

    Article  PubMed Central  PubMed  Google Scholar 

  • Ashen-Garry D, Selke M (2014) Singlet oxygen generation by cyclometalated complexes and applications. Photochem Photobiol 90(2):257–274. doi:10.1111/php.12211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brundish DE, Love WG (2000) Photodynamic therapy comes of age. IDrugs Investig Drugs J 3(12):1487–1508

    CAS  Google Scholar 

  • Casas A, Fukuda H, Meiss R, Batlle AM (1999) Topical and intratumoral photodynamic therapy with 5-aminolevulinic acid in a subcutaneous murine mammary adenocarcinoma. Cancer Lett 141(1–2):29–38

    Article  CAS  PubMed  Google Scholar 

  • Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6(7):535–545. doi:10.1038/nrc1894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838. doi:10.1021/cr900300p

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YH, Li GL, Pandey RK (2004) Synthesis of bacteriochlorins and their potential utility in photodynamic therapy (PDT). Curr Org Chem 8(12):1105–1134. doi:10.2174/1385272043370131

    Article  CAS  Google Scholar 

  • Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei BW, Burda C (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130(32):10643–10647. doi:10.1021/Ja801631c

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dabrowski JM, Urbanska K, Arnaut LG, Pereira MM, Abreu AR, Simoes S, Stochel G (2011) Biodistribution and photodynamic efficacy of a water-soluble, stable, halogenated bacteriochlorin against melanoma. ChemMedChem 6(3):465–475. doi:10.1002/cmdc.201000524

    Article  CAS  PubMed  Google Scholar 

  • Dabrowski JM, Arnaut LG, Pereira MM, Urbanska K, Simoes S, Stochel G, Cortes L (2012) Combined effects of singlet oxygen and hydroxyl radical in photodynamic therapy with photostable bacteriochlorins: evidence from intracellular fluorescence and increased photodynamic efficacy in vitro. Free Radic Biol Med 52(7):1188–1200. doi:10.1016/j.freeradbiomed.2011.12.027

    Article  CAS  PubMed  Google Scholar 

  • Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47(16):3897–3915. doi:10.1021/Jm040074b

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Xu Q, Liu F, Zhou P, Gu Y, Zeng J, An J, Dai W, Li X (2004) Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation. Cancer Lett 216(1):43–54. doi:10.1016/j.canlet.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  • Dougherty TJ (1995) Photodynamic therapy: part II. Semin Surg Oncol 11(5):333–334

    Article  CAS  PubMed  Google Scholar 

  • Finlay JC, Mitra S, Patterson MS, Foster TH (2004) Photobleaching kinetics of Photofrin in vivo and in multicell tumour spheroids indicate two simultaneous bleaching mechanisms. Phys Med Biol 49(21):4837–4860

    Article  CAS  PubMed  Google Scholar 

  • Gollnick SO, Owczarczak B, Maier P (2006) Photodynamic therapy and anti-tumor immunity. Lasers Surg Med 38(5):509–515. doi:10.1002/lsm.20362

    Article  PubMed  Google Scholar 

  • Hampton JA, Selman SH (1992) Mechanisms of cell killing in photodynamic therapy using a novel in vivo drug/in vitro light culture system. Photochem Photobiol 56(2):235–243

    Article  CAS  PubMed  Google Scholar 

  • Huang Z (2005) A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 4(3):283–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang YY, Mroz P, Zhiyentayev T, Sharma SK, Balasubramanian T, Ruzie C, Krayer M, Fan D, Borbas KE, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) In vitro photodynamic therapy and quantitative structure-activity relationship studies with stable synthetic near-infrared-absorbing bacteriochlorin photosensitizers. J Med Chem 53(10):4018–4027. doi:10.1021/jm901908s

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ji Z, Yang G, Shahzidi S, Tkacz-Stachowska K, Suo Z, Nesland JM, Peng Q (2006) Induction of hypoxia-inducible factor-1alpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy. Cancer Lett 244(2):182–189. doi:10.1016/j.canlet.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  • Juarranz A, Jaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10(3):148–154

    Article  CAS  PubMed  Google Scholar 

  • Juzeniene A, Peng Q, Moan J (2007) Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem Photobiol Sci 6(12):1234–1245. doi:10.1039/b705461k

    Article  CAS  PubMed  Google Scholar 

  • Lovell JF, Liu TW, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110(5):2839–2857. doi:10.1021/cr900236h

    Article  CAS  PubMed  Google Scholar 

  • Miskovsky P (2002) Hypericin–a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules. Curr Drug Targets 3(1):55–84

    Article  CAS  PubMed  Google Scholar 

  • O’Connor AE, Gallagher WM, Byrne AT (2009) Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 85(5):1053–1074. doi:10.1111/j.1751-1097.2009.00585.x

    Article  PubMed  Google Scholar 

  • Osaki T, Takagi S, Hoshino Y, Okumura M, Fujinaga T (2006) Intracellular localization and concentration as well as photodynamic effects of benzoporphyrin derivative monoacid ring A in four types of rodent tumor cells. Cancer Lett 243(2):281–292. doi:10.1016/j.canlet.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  • Osaki T, Takagi S, Hoshino Y, Okumura M, Fujinaga T (2007) Antitumor effects and blood flow dynamics after photodynamic therapy using benzoporphyrin derivative monoacid ring A in KLN205 and LM8 mouse tumor models. Cancer Lett 248(1):47–57. doi:10.1016/j.canlet.2006.05.021

    Article  CAS  PubMed  Google Scholar 

  • Phillips D (2010) Light relief: photochemistry and medicine. Photochem Photobiol Sci 9(12):1589–1596. doi:10.1039/c0pp00237b

    Article  CAS  PubMed  Google Scholar 

  • Pineiro M, Gonsalves AMDR, Pereira MM, Formosinho SJ, Arnaut LG (2002) New halogenated phenylbacteriochlorins and their efficiency in singlet-oxygen sensitization. J Phys Chem A 106(15):3787–3795. doi:10.1021/Jp013678p

    Article  CAS  Google Scholar 

  • Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70(4):391–475

    Article  CAS  PubMed  Google Scholar 

  • Silva EF, Serpa C, Dabrowski JM, Monteiro CJ, Formosinho SJ, Stochel G, Urbanska K, Simoes S, Pereira MM, Arnaut LG (2010) Mechanisms of singlet-oxygen and superoxide-ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy. Chemistry 16(30):9273–9286. doi:10.1002/chem.201000111

    Article  CAS  PubMed  Google Scholar 

  • Spiller W, Kliesch H, Wohrle D, Hackbarth S, Roder B, Schnurpfeil G (1998) Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J Porphyr Phthalocyanines 2(2):145–158. doi:10.1002/(Sici)1099-1409(199803/04)2:2<145:Aid-Jpp60>3.0.Co;2-2

    Article  CAS  Google Scholar 

  • Stylli SS, Kaye AH (2006) Photodynamic therapy of cerebral glioma—a review. Part II—clinical studies. J clin neurosci 13(7):709–717. doi:10.1016/j.jocn.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  • Triesscheijn M, Baas P, Schellens JH, Stewart FA (2006) Photodynamic therapy in oncology. Oncologist 11(9):1034–1044. doi:10.1634/theoncologist.11-9-1034

    Article  CAS  PubMed  Google Scholar 

  • Tsai JC, Wu CL, Chien HF, Chen CT (2005) Reorganization of cytoskeleton induced by 5-aminolevulinic acid-mediated photodynamic therapy and its correlation with mitochondrial dysfunction. Lasers Surg Med 36(5):398–408. doi:10.1002/lsm.20179

    Article  PubMed  Google Scholar 

  • van Duijnhoven FH, Rovers JP, Engelmann K, Krajina Z, Purkiss SF, Zoetmulder FA, Vogl TJ, Terpstra OT (2005) Photodynamic therapy with 5,10,15,20-tetrakis (m-hydroxyphenyl) bacteriochlorin for colorectal liver metastases is safe and feasible: results from a phase I study. Ann Surg Oncol 12(10):808–816. doi:10.1245/ASO.2005.09.005

    Article  PubMed  Google Scholar 

  • Wang H, Li J, Lv T, Tu Q, Huang Z, Wang X (2013) Therapeutic and immune effects of 5-aminolevulinic acid photodynamic therapy on UVB-induced squamous cell carcinomas in hairless mice. Exp Dermatol 22(5):362–363. doi:10.1111/exd.12132

    Article  CAS  PubMed  Google Scholar 

  • Yan YJ, Zheng MZ, Chen ZL, Yu XH, Yang XX, Ding ZL, Xu L (2010) Studies on preparation and photodynamic mechanism of chlorin P6-13,15-N-(cyclohexyl) cycloimide (Chlorin-H) and its antitumor effect for photodynamic therapy in vitro and in vivo. Bioorg Med Chem 18(17):6282–6291. doi:10.1016/j.bmc.2010.07.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation (21372042, 81101298, 81301878), Foundation of Shanghai government (13431900700, 14431906200, 13430722300, 14140903500, 13ZR1441000, 13ZR1440900, 14ZR1439800, 14ZR1439900, 201370) and Foundation of Yiwu Science and Technology Bureau (2011-G1-15, 2013-G3-03, 2012-G3-02).

Conflict of interest

We declare that we have no conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Long Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LJ., O’Shea, D., Zhang, CY. et al. Evaluation of a bacteriochlorin-based photosensitizer’s anti-tumor effect in vitro and in vivo. J Cancer Res Clin Oncol 141, 1921–1930 (2015). https://doi.org/10.1007/s00432-015-1960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1960-z

Keywords

Navigation