Skip to main content

Advertisement

Log in

Hypoxia-induced nitric oxide release by luminal cells stimulates proliferation and uPA secretion of myoepithelial cells in a bicellular murine mammary tumor

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

LM38 murine mammary adenocarcinoma model is formed by LM38-LP (myoepithelial and luminal), LM38-HP (luminal) and LM38-D2 (myoepithelial) cell lines. In a previous work, we had shown that LM38-HP and LM38-D2 cell lines are less malignant than the bicellular LM38-LP cell line.

Purpose

To study the role of nitric oxide (NO) as one of the mediators of functional interactions between malignant luminal and myoepithelial cells.

Methods and results

Using immunohistochemistry, in vivo iNOS expression was only detected in the luminal cells of bicellular LM38-LP and most cells of LM38-HP tumors. In cobalt-induced pseudohypoxia, LM38-LP and LM38-HP cell lines significantly increased HIF-1α and iNOS expression (Western blotting) and therefore NO production (Griess method). This increase was inhibited by the iNOS inhibitor 1400 W. On the other side, NO was not detectable in LM38-D2 cells either in basal or in pseudohypoxia. In addition, pseudohypoxia increased urokinase-type plasminogen activator (uPA) secretion by LM38-LP and LM38-HP cells and migration in the LM38-LP cell line, without modulating these properties in LM38-D2 cells (radial caseinolysis). The NO donor DETA/NONOate (500 μM) was able to increase uPA secretion and in vitro growth of LM38-D2. In agreement, 1400 W prevented in vivo growth of the myoepithelial LM38-D2 cells.

Conclusions

Hypoxia leads to an enhanced NO production by the luminal component, through HIF-1α and iNOS, which can stimulate myoepithelial cell proliferation and uPA secretion. In these new conditions, myoepithelial cells might act as an invasive forefront generating gaps that could help luminal cells to escape from the primary tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriance MC, Inman JL, Petersen OW, Bissell MJ (2005) Myoepithelial cells: good fences make good neighbors. Breast Cancer Res 7(5):190–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barsky SH, Karlin NJ (2005) Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia 10(3):249–260

    Article  PubMed  Google Scholar 

  • Barsky SH, Karlin NJ (2006) Mechanisms of disease: breast tumor pathogenesis and the role of the myoepithelial cell. Nat Clin Pract Oncol 3(3):138–151

    Article  CAS  PubMed  Google Scholar 

  • Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D, Ellies L, Johnson RS (2012) Endothelial cell HIF-1alpha and HIF-2alpha differentially regulate metastatic success. Cancer Cell 21(1):52–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bumaschny V, Urtreger A, Diament M, Krasnapolski M, Fiszman G, Klein S, Joffe EB (2004) Malignant myoepithelial cells are associated with the differentiated papillary structure and metastatic ability of a syngeneic murine mammary adenocarcinoma model. Breast Cancer Res 6(2):R116–R129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

  • Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19(8):968–988

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Imanaka N, Chen J, Griffin JD (2010) Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer 102(2):351–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155(7):1639–1651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA (2002) The importance of being a myoepithelial cell. Breast Cancer Res 4(6):224–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eijan AM, Piccardo I, Riveros MD, Sandes EO, Porcella H, Jasnis MA, Sacerdote De Lustig E, Malagrino H, Pasik L, Casabe AR (2002) Nitric oxide in patients with transitional bladder cancer. J Surg Oncol 81(4):203–208

    Article  CAS  PubMed  Google Scholar 

  • Fandrey J, Gorr TA, Gassmann M (2006) Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71(4):642–651

    Article  CAS  PubMed  Google Scholar 

  • Fisher ER, Anderson S, Tan-Chiu E, Fisher B, Eaton L, Wolmark N (2001) Fifteen-year prognostic discriminants for invasive breast carcinoma: national Surgical Adjuvant Breast and Bowel Project Protocol-06. Cancer 91(8 Suppl):1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Foschini MP, Eusebi V (1998) Carcinomas of the breast showing myoepithelial cell differentiation. A review of the literature. Virchows Arch 432(4):303–310

    Article  CAS  PubMed  Google Scholar 

  • Fukumura D, Jain RK (1998) Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev 17(1):77–89

    Article  CAS  PubMed  Google Scholar 

  • Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG (1997) 1400 W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272(8):4959–4963

    Article  CAS  PubMed  Google Scholar 

  • Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, Ridnour LA, Martin DN, Switzer CH, Hudson RS, Wink DA, Lee DH, Stephens RM, Ambs S (2010) Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest 120(11):3843–3854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon LA, Mulligan KT, Maxwell-Jones H, Adams M, Walker RA, Jones JL (2003) Breast cell invasive potential relates to the myoepithelial phenotype. Int J Cancer 106(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hegardt P, Widegren B, Sjogren HO (2000) Nitric-oxide-dependent systemic immunosuppression in animals with progressively growing malignant gliomas. Cell Immunol 200(2):116–127

    Article  CAS  PubMed  Google Scholar 

  • Jadeski LC, Chakraborty C, Lala PK (2003) Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 106(4):496–504

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Nonni AV, Fulford L, Merrett S, Chaggar R, Eusebi V, Lakhani SR (2001) CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation. Br J Cancer 85(3):422–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi K, Smith JA, Perusinghe N, Monoghan P (1986) Cell proliferation in the human mammary epithelium. Differential contribution by epithelial and myoepithelial cells. Am J Pathol 124(2):199–206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jung F, Palmer LA, Zhou N, Johns RA (2000) Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86(3):319–325

    Article  CAS  PubMed  Google Scholar 

  • Lakhani SR, O’Hare MJ (2001) The mammary myoepithelial cell–Cinderella or ugly sister? Breast Cancer Res 3(1):1–4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lala PK, Orucevic A (1998) Role of nitric oxide in tumor progression: lessons from experimental tumors. Cancer Metastasis Rev 17(1):91–106

    Article  CAS  PubMed  Google Scholar 

  • Le QT, Denko NC, Giaccia AJ (2004) Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23(3–4):293–310

    Article  CAS  PubMed  Google Scholar 

  • Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67(2):563–572

    Article  CAS  PubMed  Google Scholar 

  • Liu QY, Niranjan B, Gomes P, Gomm JJ, Davies D, Coombes RC, Buluwela L (1996) Inhibitory effects of activin on the growth and morphogenesis of primary and transformed mammary epithelial cells. Cancer Res 56(5):1155–1163

    CAS  PubMed  Google Scholar 

  • Liu L, Sun L, Zhao P, Yao L, Jin H, Liang S, Wang Y, Zhang D, Pang Y, Shi Y, Chai N, Zhang H, Zhang H (2010) Hypoxia promotes metastasis in human gastric cancer by up-regulating the 67-kDa laminin receptor. Cancer Sci 101(7):1653–1660

    Article  CAS  PubMed  Google Scholar 

  • Loibl S, Buck A, Strank C, von Minckwitz G, Roller M, Sinn HP, Schini-Kerth V, Solbach C, Strebhardt K, Kaufmann M (2005) The role of early expression of inducible nitric oxide synthase in human breast cancer. Eur J Cancer 41(2):265–271

    Article  CAS  PubMed  Google Scholar 

  • Margheri F, Luciani C, Taddei ML, Giannoni E, Laurenzana A, Biagioni A, Chilla A, Chiarugi P, Fibbi G, Del Rosso M (2014) The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget 5(6):1538–1553

    PubMed Central  PubMed  Google Scholar 

  • Montrucchio G, Lupia E, de Martino A, Battaglia E, Arese M, Tizzani A, Bussolino F, Camussi G (1997) Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha. Am J Pathol 151(2):557–563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagle RB, Bocker W, Davis JR, Heid HW, Kaufmann M, Lucas DO, Jarasch ED (1986) Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. J Histochem Cytochem 34(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Alpaugh ML, Barsky SH (2000) The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene 19(31):3449–3459

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JC, Lashkari D, Shalon D, Brown PO, Botstein D (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96(16):9212–9217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  • Radisavljevic Z (2004) Inactivated tumor suppressor Rb by nitric oxide promotes mitosis in human breast cancer cells. J Cell Biochem 92(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Rehm S (1990) Chemically induced mammary gland adenomyoepitheliomas and myoepithelial carcinomas of mice. Immunohistochemical and ultrastructural features. Am J Pathol 136(3):575–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reveneau S, Arnould L, Jolimoy G, Hilpert S, Lejeune P, Saint-Giorgio V, Belichard C, Jeannin JF (1999) Nitric oxide synthase in human breast cancer is associated with tumor grade, proliferation rate, and expression of progesterone receptors. Lab Invest 79(10):1215–1225

    CAS  PubMed  Google Scholar 

  • Ridnour LA, Thomas DD, Switzer C, Flores-Santana W, Isenberg JS, Ambs S, Roberts DD and Wink DA (2008) Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 19(2):73–76. doi:10.1016/j.niox.2008.04.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudland PS, Fernig DG, Smith JA (1995) Growth factors and their receptors in neoplastic mammary glands. Biomed Pharmacother 49(9):389–399

    Article  CAS  PubMed  Google Scholar 

  • Santosh R, Padu K, Singh ThB, Sharma MB, Singh TS (2013) Myoepithelial carcinoma of the breast. J Clin Diagn Res 7(6):1191–1193

    Google Scholar 

  • Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073

    Article  CAS  PubMed  Google Scholar 

  • Sollid J, Rissanen E, Tranberg HK, Thorstensen T, Vuori KA, Nikinmaa M, Nilsson GE (2006) HIF-1alpha and iNOS levels in crucian carp gills during hypoxia-induced transformation. J Comp Physiol B 176(4):359–369

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH (1997) The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 3(11):1949–1958

    CAS  PubMed  Google Scholar 

  • Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45(1):18–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomsen LL, Miles DW (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 17(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • Urtreger AJ, Aguirre Ghiso JA, Werbajh SE, Puricelli LI, Muro AF, de Kier Bal, Joff E (1999) Involvement of fibronectin in the regulation of urokinase production and binding in murine mammary tumor cells. Int J Cancer 82(5):748–753

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82(12):3610–3615

    CAS  PubMed  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams-Fritze MJ, Carlson Scholz JA, Bossuyt V, Booth CJ (2011) Use of p63, a myoepithelial cell marker, in determining the invasiveness of spontaneous mammary neoplasia in a rhesus macaque (Macaca mulatta). J Am Assoc Lab Anim Sci 50(2):252–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao G, Liu YE, Gentz R, Sang QA, Ni J, Goldberg ID, Shi YE (1999) Suppression of breast cancer growth and metastasis by a serpin myoepithelium-derived serine proteinase inhibitor expressed in the mammary myoepithelial cells. Proc Natl Acad Sci USA 96(7):3700–3705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Xu X, Verstraete W (2000) Adaptation of E. coli cell method for micro-scale nitrate measurement with the Griess reaction in culture media. J Microbiol Methods 41(1):23–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank MSc Lina Marino, Alicia Rivelli and Silvina Romero for help with immunohistochemistry and technical assistance. Also, we are thankful to Vanina Rodriguez and Candela Martin for the provision and care of mice. This work was supported by Grants from the Agencia Nacional para la Promoción de la Ciencia y la Tecnolgía (ANPCyT, Prestamo BID PICT2010-01296), from the Universidad de Buenos Aires (UBACYT MO15 and M20020100100243) and from Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP193). No founding source had any involvement in study design; the collection, analysis or interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Eiján.

Additional information

Elisa Bal De Kier Joffé and Ana María Eiján are Members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnapolski, M.A., Lodillinsky, C., Bal De Kier Joffé, E. et al. Hypoxia-induced nitric oxide release by luminal cells stimulates proliferation and uPA secretion of myoepithelial cells in a bicellular murine mammary tumor. J Cancer Res Clin Oncol 141, 1727–1738 (2015). https://doi.org/10.1007/s00432-015-1934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1934-1

Keywords

Navigation