Skip to main content

Advertisement

Log in

Bispecific Her2 × cotinine antibody in combination with cotinine–(histidine)2–iodine for the pre-targeting of Her2-positive breast cancer xenografts

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cotinine has optimal characteristics as a hapten for pre-targeted radioimmunotherapy (PRIT). This study was performed to evaluate the applicability of cotinine/anti-cotinine antibody to PRIT.

Methods

We developed and prepared a tandem, single-chain, variable fragment Fc fusion protein [tandem single-chain variable fragment (scFv) Fc fusion protein] that is reactive to both human epidermal growth factor receptor 2 (Her2) and cotinine. Its simultaneous reactivity to Her2 and cotinine was tested in an enzyme-linked immunosorbent assay (ELISA) and two radioimmunoassays (RIA) employing Her2-coated RIA tubes and a Her2-overexpressing cell line. For in vivo imaging, mice bearing Her2-positive tumors were injected with a mixture of tandem scFv Fc fusion and 125I-cotinine-conjugated histidine dipeptide (125I-cotinine peptide). After a delay, 125I-cotinine peptide was injected again.

Results

ELISA and RIA results showed that tandem scFv Fc fusion protein successfully bound to both Her2 and cotinine. In single-photon emission computed tomography (SPECT), the complex of tandem scFv Fc fusion protein and 125I-cotinine peptide was localized to Her2-positive tumor xenografts in mice 4 h after the first injection. Enhanced radioactivity at the site of the Her2-positive tumor lesion was monitored 1 h after the second injection.

Conclusions

With these findings, we conclude that the tandem scFv Fc fusion protein and cotinine hapten system have the potential to be applied in PRIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson K, Lai ZH, McDonald OB, Stuart JD, Nartey EN et al (2009) Biochemical characterization of GSK1070916, a potent and selective inhibitor of Aurora B and Aurora C kinases with an extremely long residence time. Biochem J 420:259–265

    Article  CAS  PubMed  Google Scholar 

  • Baxter AB, Melnikoff S, Stites DP, Brasch RC (1991) Immunogenicity of gadolinium-based contrast agents for magnetic-resonance-imaging—induction and characterization of antibodies in animals. Invest Radiol 26:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Behr TM, Gotthardt M, Becker W, Behe M (2002) Radioiodination of monoclonal antibodies, proteins and peptides for diagnosis and therapy—a review of standardized, reliable and safe procedures for clinical grade levels kBq to GBq in the Gottingen/Marburg experience. Nuklearmedizin-Nucl Med 41:71–79

    CAS  Google Scholar 

  • Boerman OC, van Schaijk FG, Oyen WJG, Corstens FHM (2003) Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 44:400–411

    PubMed  Google Scholar 

  • Bowman Edward R, Herbert McKennis J (1962) Studies on the metabolism of (−)-cotinine in the human. J Pharmacol Exp Ther 135:306

    CAS  PubMed  Google Scholar 

  • Carter P, Presta L, Gorman CM, Ridgway JBB, Henner D et al (1992) Humanization of an Anti-P185her2 antibody for human cancer-therapy. Proc Natl Acad Sci USA 89:4285–4289

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Sharkey RM, Rossi EA, Karacay H, McBride W et al (2002) Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Mol Cancer Ther 1:553–563

    CAS  PubMed  Google Scholar 

  • Chang CH, Rossi EA, Goldenberg DM (2007) The dock and lock method: a novel platform technology for building multivalent, multifunctional structures of defined composition with retained bioactivity. Clin Cancer Res 13:5586s–5591s

    Article  CAS  PubMed  Google Scholar 

  • Chatal JF, Davodeau F, Cherel M, Barbet J (2009) Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors. J Cancer Res Ther 5:36–40

    Article  Google Scholar 

  • Colombo P, Siccardi AG, Paganelli G, Magnani P, Songini C et al (1996) Three-step immunoscintigraphy with anti-chromogranin a monoclonal antibody in tumours of the pituitary region. Eur J Endocrinol 135:216–221

    Article  CAS  PubMed  Google Scholar 

  • Fritz T, Unger E, Wilsonsanders S, Ahkong QF, Tilcock C (1991) Detailed toxicity studies of liposomal gadolinium-DTPA. Invest Radiol 26:960–968

    Article  CAS  PubMed  Google Scholar 

  • Gautherot E, Le Doussal JM, Bouhou J, Manetti C, Martin M et al (1998) Delivery of therapeutic doses of radioiodine using bispecific antibody-targeted bivalent haptens. J Nucl Med 39:1937–1943

    CAS  PubMed  Google Scholar 

  • Goldenberg DM, Rossi EA, Sharkey RM, McBride WJ, Chang CH (2008) Multifunctional antibodies by the dock-and-lock method for improved cancer Imaging and therapy by pretargeting. J Nucl Med 49:158–163

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2002) Understanding biochemical dissociation constants: a temporal perspective. J Chem Educ 79:968–971

    Article  CAS  Google Scholar 

  • Karacay H, Brard PY, Sharkey RM, Chang CH, Rossi EA et al (2005) Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft. Clin Cancer Res 11:7879–7885

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Huestis MA (2006) A validated method for the determination of nicotine, cotinine, trans-3′-hydroxycotinine, and norcotinine in human plasma using solid-phase extraction and liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. J Mass Spectrom 41:815–821

    Article  CAS  PubMed  Google Scholar 

  • Knox SJ, Goris ML, Tempero M, Weiden PL, Gentner L et al (2000) Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 6:406–414

    CAS  PubMed  Google Scholar 

  • Kosmas C, Snook D, Gooden CS, Courtenayluck NS, Mccall MJ et al (1992) Development of humoral immune-responses against a macrocyclic chelating agent (Dota) in cancer-patients receiving radioimmunoconjugates for imaging and therapy. Cancer Res 52:904–911

    CAS  PubMed  Google Scholar 

  • Kosmas C, Maraveyas A, Gooden CS, Snook D, Epenetos AA (1995) Anti-chelate antibodies after intraperitoneal yttrium-90-labeled monoclonal-antibody immunoconjugates for ovarian-cancer therapy. J Nucl Med 36:746–753

    CAS  PubMed  Google Scholar 

  • Massarweh S, Osborne CK, Jiang S, Wakeling AE, Rimawi M et al (2006) Mechanisms of tumor regression and resistance to estrogen deprivation and fulvestrant in a model of estrogen receptor-positive, HER-2/neu-positive breast cancer. Cancer Res 66:8266–8273

    Article  CAS  PubMed  Google Scholar 

  • Meyer DCC, Port M, Barbotin V, Bonnemain B (2010) Process for preparing a pharmaceutical formulation of contrast agents. EP2242515 A2

  • Milenic DE, Brady ED, Brechbiel MW (2004) Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov 3:488–498

    Article  CAS  PubMed  Google Scholar 

  • Moran VE (2012) Cotinine: beyond the expected, more than a biomarker of tobacco consumption. Frontiers Pharmacol 3:1–9

    Article  Google Scholar 

  • Olafsen T, Tan GJ, Cheung CW, Yazaki PJ, Park JM et al (2004) Characterization of engineered anti-pI85(HER-2) (scFv-C(H)3)(2) antibody fragments (minibodies) for tumor targeting. Protein Eng Des Sel 17:315–323

    Article  CAS  PubMed  Google Scholar 

  • Orcutt KD, Nasr KA, Whitehead DG, Frangioni JV, Wittrup KD (2011) Biodistribution and clearance of small molecule hapten chelates for pretargeted radioimmunotherapy. Mol Imag Biol 13:215–221

    Article  Google Scholar 

  • Paganelli G, Riva P, Deleide G, Clivio A, Chiolerio F et al. (1988) Invivo labeling of biotinylated monoclonal-antibodies by radioactive avidin—a strategy to increase tumor radiolocalization. Int J Cancer 2:121–125

    Article  CAS  Google Scholar 

  • Park S, Lee DH, Park JG, Lee YT, Chung J (2010) A sensitive enzyme immunoassay for measuring cotinine in passive smokers. Clin Chim Acta 411:1238–1242

    Article  CAS  PubMed  Google Scholar 

  • Park S, Hwang D, Chung J (2012) Cotinine-conjugated aptamer/anti-cotinine antibody complexes as a novel affinity unit for use in biological assays. Exp Mol Med 44:554–561

    Article  CAS  PubMed  Google Scholar 

  • Riah O, Dousset JC, Courriere P, Stigliani JL, Baziard-Mouysset G et al (1999) Evidence that nicotine acetylcholine receptors are not the main targets of cotinine toxicity. Toxicol Lett 109:21–29

    Article  CAS  PubMed  Google Scholar 

  • Rossi EA, Goldenberg DM, Cardillo TM, McBride WJ, Sharkey RM et al (2006) Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci USA 103:6841–6846

    Article  CAS  PubMed  Google Scholar 

  • Sharkey RM, Karacay H, Chang CH, McBride WJ, Horak ID et al (2005) Improved therapy of non-Hodgkin’s lymphoma xenografts using radionuclides pretargeted with a new anti-CD20 bispecific antibody. Leukemia 19:1064–1069

    Article  CAS  PubMed  Google Scholar 

  • Sharkey RM, Rossi EA, McBride WJ, Chang CH, Goldenberg DM (2010) Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med 40:190–203

    Article  PubMed Central  PubMed  Google Scholar 

  • Watanabe N, Goodwin DA, Meares CF, Mctigue M, Chaovapong W et al (1994) Immunogenicity in rabbits and mice of an antibody-chelate conjugate—comparison of (S) and (R) macrocyclic enantiomers and an acyclic chelating agent. Cancer Res 54:1049–1054

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grants from the following programs: Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2013-009119); Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093820); and the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (2011-0030119).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junho Chung.

Additional information

Soomin Yoon and Yun-Hee Kim have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S., Kim, YH., Kang, S.H. et al. Bispecific Her2 × cotinine antibody in combination with cotinine–(histidine)2–iodine for the pre-targeting of Her2-positive breast cancer xenografts. J Cancer Res Clin Oncol 140, 227–233 (2014). https://doi.org/10.1007/s00432-013-1548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1548-4

Keywords

Navigation