Skip to main content

Advertisement

Log in

Effect of the tyrosine kinase inhibitor nilotinib in patients with hypereosinophilic syndrome/chronic eosinophilic leukemia: analysis of the phase 2, open-label, single-arm A2101 study

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Hypereosinophilic syndrome (HES) and chronic eosinophilic leukemia (CEL) are characterized by sustained overproduction of eosinophils and organ dysfunction. CEL involves the presence of clonal genetic markers, such as a fusion of FIP1-like 1 protein and platelet-derived growth factor receptor α (FIP1L1-PDGFRα, or F/P) or PDGFRα-activating mutations.

Methods

Sixteen patients with HES/CEL were enrolled in the phase 2 nilotinib registration trial (NCT00109707) and treated with nilotinib 400 mg twice daily. The median duration of treatment was 95 days (range 3–1,079).

Results

Twelve patients had HES: 1 achieved a complete hematologic response (CHR), 3 achieved stable disease, 3 had progressive disease, and 5 were not evaluable for response. Four patients had CEL: 2 with the F/P fusion and 2 with PDGFRα-activating mutations. Both patients with an F/P fusion achieved a CHR; 1 also achieved a complete molecular response (CMR). Of the 2 patients with PDGFRα-activating mutations, 1 had stable disease and the other achieved CMR. At 24 months, overall survival in the HES group was 75.0 % (95 % CI 50.5–100.0) and no patients in the CEL group died. Median survival was not yet reached after a median follow-up of 32 months. The most common grade 3/4 hematologic laboratory abnormalities were lymphocytopenia (31.3 %) and neutropenia (25.0 %). The most common drug-related nonhematologic grade 3/4 adverse event was pruritus, which occurred in 2 patients (12.5 %).

Conclusions

Nilotinib 400 mg twice daily was effective in some patients with HES/CEL regardless of F/P mutation status, and the safety profile was consistent with other nilotinib studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S et al (2007) The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 92(9):1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner C, Gleixner KV, Peter B, Ferenc V, Gruze A, Remsing Rix LL et al (2008) Dasatinib inhibits the growth and survival of neoplastic human eosinophils (EOL-1) through targeting of FIP1L1-PDGFRalpha. Exp Hematol 36(10):1244–1253

    Article  CAS  PubMed  Google Scholar 

  • Buchdunger E, Matter A, Druker BJ (2001) Bcr-abl inhibition as a modality of CML therapeutics. Biochim Biophys Acta 1551(1):M11–M18

    CAS  PubMed  Google Scholar 

  • Butterfield JH (2009) Success of short-term, higher-dose imatinib mesylate to induce clinical response in FIP1L1-PDGFRalpha-negative hypereosinophilic syndrome. Leuk Res 33(8):1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Butterfield JH, Weiler CR (2012) Treatment of hypereosinophilic syndromes—the first 100 years. Semin Hematol 49(2):182–191

    Article  CAS  PubMed  Google Scholar 

  • Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al (2003a) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348(13):1201–1214

    Article  CAS  PubMed  Google Scholar 

  • Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM et al (2003b) PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 3(5):459–469

    Article  CAS  PubMed  Google Scholar 

  • Cools J, Maertens C, Marynen P (2005) Resistance to tyrosine kinase inhibitors: calling on extra forces. Drug Resist Updat 8(3):119–129

    Article  CAS  PubMed  Google Scholar 

  • Cortes JE, Hochhaus A, le Coutre PD, Rosti G, Pinilla-Ibarz J, Jabbour E et al (2011) Minimal cross-intolerance with nilotinib in patients with chronic myeloid leukemia in chronic or accelerated phase who are intolerant to imatinib. Blood 117(21):5600–5606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crane MM, Chang CM, Kobayashi MG, Weller PF (2010) Incidence of myeloproliferative hypereosinophilic syndrome in the United States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol 126(1):179–181

    Article  PubMed  Google Scholar 

  • Cross NC, Reiter A (2008) Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol 119(4):199–206

    Article  CAS  PubMed  Google Scholar 

  • Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M et al (2011) Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood 117(10):2935–2943

    Article  CAS  PubMed  Google Scholar 

  • Giles FJ, Kantarjian HM, le Coutre PD, Baccarani M, Mahon FX, Blakesley RE et al (2012) Nilotinib is effective in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blastic phase. Leukemia 26(5):959–962

    Article  CAS  PubMed  Google Scholar 

  • Giles FJ, le Coutre PD, Pinilla-Ibarz J, Larson RA, Gattermann N, Ottmann OG et al (2013) Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia 27(1):107–112

    Article  CAS  PubMed  Google Scholar 

  • Gotlib J (2012) World health organization-defined eosinophilic disorders: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 87(9):903–914

    Article  PubMed  Google Scholar 

  • Gotlib J, Cools J (2008) Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 22(11):1999–2010

    Article  CAS  PubMed  Google Scholar 

  • Gotlib J, Cools J, Malone JM III, Schrier SL, Gilliland DG, Coutre SE (2004) The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 103(8):2879–2891

    Article  CAS  PubMed  Google Scholar 

  • Gotlib J, DeAngelo DJ, George TI, Corless CL, Linder A, Langford C et al (2010) KIT inhibitor midostaurin exhibits a high rate of clinically meaningful and durable responses in advanced systemic mastocytosis: report of a fully accrued phase II trial. Blood 116(21): abstract 316

    Google Scholar 

  • Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O et al (2012) KIT inhibitor midostaurin in patients with advanced systemic mastocytosis: Results of a planned interim analysis of the global CPKC412D2201 trial. Blood 120(Suppl): abstract 799

    Google Scholar 

  • Helbig G, Moskwa A, Hus M, Piszcz J, Swiderska A, Urbanowicz A et al (2010) Clinical characteristics of patients with chronic eosinophilic leukaemia (CEL) harbouring FIP1L1-PDGFRA fusion transcript–results of Polish multicentre study. Hematol Oncol 28(2):93–97

    PubMed  Google Scholar 

  • Helbig G, Soja A, Bartkowska-Chrobok A, Kyrcz-Krzemien S (2012) Chronic eosinophilic leukemia-not otherwise specified has a poor prognosis with unresponsiveness to conventional treatment and high risk of acute transformation. Am J Hematol 87(6):643–645

    Article  PubMed  Google Scholar 

  • Ikezoe T, Togitani K, Tasaka T, Nishioka C, Yokoyama A (2010) Successful treatment of imatinib-resistant hypereosinophilic syndrome with nilotinib. Leuk Res 34(8):e200–e201

    Article  PubMed  Google Scholar 

  • Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354(24):2542–2551

    Article  PubMed  Google Scholar 

  • Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F et al (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110(10):3540–3546

    Article  CAS  PubMed  Google Scholar 

  • Klion AD, Law MA, Noel P, Kim YJ, Haverty TP, Nutman TB (2004) Safety and efficacy of the monoclonal anti-interleukin-5 antibody SCH55700 in the treatment of patients with hypereosinophilic syndrome. Blood 103(8):2939–2941

    Article  CAS  PubMed  Google Scholar 

  • le Coutre PD, Giles FJ, Hochhaus A, Apperley JF, Ossenkoppele GJ, Blakesley R et al (2012) Nilotinib in patients with Ph + chronic myeloid leukemia in accelerated phase following imatinib resistance or intolerance: 24-month follow-up results. Leukemia 26(6):1189–1194

    Article  PubMed  Google Scholar 

  • Lierman E, Folens C, Stover EH, Mentens N, Van Miegroet H, Scheers W et al (2006) Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFRalpha T674I mutant. Blood 108(4):1374–1376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lierman E, Smits S, Cools J, Dewaele B, Debiec-Rychter M, Vandenberghe P (2012) Ponatinib is active against imatinib-resistant mutants of FIP1L1-PDGFRA and KIT, and against FGFR1-derived fusion kinases. Leukemia 26(7):1693–1695

    Article  CAS  PubMed  Google Scholar 

  • Loules G, Kalala F, Giannakoulas N, Papadakis E, Matsouka P, Speletas M (2009) FIP1L1-PDGFRA molecular analysis in the differential diagnosis of eosinophilia. BMC Blood Disord 9:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Manley PW, Stiefl N, Cowan-Jacob SW, Kaufman S, Mestan J, Wartmann M et al (2010) Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorg Med Chem 18(19):6977–6986

    Article  CAS  PubMed  Google Scholar 

  • Metzgeroth G, Walz C, Erben P, Popp H, Schmitt-Graeff A, Haferlach C et al (2008) Safety and efficacy of imatinib in chronic eosinophilic leukaemia and hypereosinophilic syndrome: a phase-II study. Br J Haematol 143(5):707–715

    Article  CAS  PubMed  Google Scholar 

  • Metzgeroth G, Erben P, Martin H, Mousset S, Teichmann M, Walz C et al (2012) Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia 26(1):162–164

    Article  CAS  PubMed  Google Scholar 

  • National Cancer Institute (2006) Common terminology criteria for adverse events (CTCAE), version 3.0

  • Novartis Pharmaceuticals Corporation (January 2012) Gleevec [package insert]

  • Novartis Pharmaceuticals Corporation (May 2012) Tasigna [package insert]

  • Pardanani A, Tefferi A (2004) Imatinib therapy for hypereosinophilic syndrome and eosinophilia-associated myeloproliferative disorders. Leuk Res 28(Suppl 1):S47–S52

    Article  CAS  PubMed  Google Scholar 

  • Roche-Lestienne C, Lepers S, Soenen-Cornu V, Kahn JE, Lai JL, Hachulla E et al (2005) Molecular characterization of the idiopathic hypereosinophilic syndrome (HES) in 35 French patients with normal conventional cytogenetics. Leukemia 19(5):792–798

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF, Simon HU et al (2008) Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med 358(12):1215–1228

    Article  CAS  PubMed  Google Scholar 

  • Roufosse F (2009) Hypereosinophilic syndrome variants: diagnostic and therapeutic considerations. Haematologica 94(9):1188–1193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roufosse FE, Goldman M, Cogan E (2007) Hypereosinophilic syndromes. Orphanet J Rare Dis 2:37

    Article  PubMed Central  PubMed  Google Scholar 

  • Soverini S, Iacobucci I, Baccarani M, Martinelli G (2007) Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica 92(4):437–439

    Article  CAS  PubMed  Google Scholar 

  • Stover EH, Chen J, Lee BH, Cools J, McDowell E, Adelsperger J et al (2005) The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRβ and FIP1L1-PDGFRα in vitro and in vivo. Blood 106(9):3206–3213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabouret E, Charbonnier A, Mozziconacci MJ, Ivanov V (2011) Low-dose nilotinib can maintain complete molecular remissions in FIP1L1/PDGFRA-positive hypereosinophilic syndrome. Leuk Res 35(1):136

    Article  PubMed  Google Scholar 

  • Valent P, Klion AD, Rosenwasser LJ, Arock M, Bochner BS, Butterfield JH et al (2012) ICON: eosinophil disorders. World Allergy Organ J 5(12):174–181

    Article  PubMed Central  PubMed  Google Scholar 

  • Vandenberghe P, Wlodarska I, Michaux L, Zachee P, Boogaerts M, Vanstraelen D et al (2004) Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia 18(4):734–742

    Article  CAS  PubMed  Google Scholar 

  • Verstovsek S (2007) New hematological indications for imatinib. Eur Oncol Dis 1(2):26–28

    Google Scholar 

  • Verstovsek S, Giles FJ, Quintas-Cardama A, Manshouri T, Huynh L, Manley P et al (2006) Activity of AMN107, a novel aminopyrimidine tyrosine kinase inhibitor, against human FIP1L1-PDGFR-alpha-expressing cells. Leuk Res 30(12):1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Verstovsek S, Tefferi A, Kantarjian H, Manshouri T, Luthra R, Pardanani A et al (2009) Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin Cancer Res 15(1):368–373

    Article  CAS  PubMed  Google Scholar 

  • Wicklein D, Ramos Leal N, Salamon J, Thamer M, Herrmann H, Valent P et al (2012) Nilotinib and imatinib are comparably effective in reducing growth of human eosinophil leukemia cells in a newly established xenograft model. PLoS One 7(2):e30567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals Corporation. The authors thank Erinn Goldman, PhD, and Pamela Tuttle, PhD, for medical editorial assistance with this manuscript.

Conflict of interest

AH received research funding from Novartis Pharmaceuticals Corporation. PDlC received research funding from Novartis and honoraria as a speaker from Novartis, Bristol-Myers Squibb (BMS), Pfizer, and ARIAD Pharmaceuticals. HMK received research funding from Novartis Pharmaceuticals Corporation, Pfizer, ARIAD Pharmaceuticals, and BMS. MB acted as a consultant, received honoraria and attended a speakers’ bureau for Novartis Pharmaceuticals Corporation, BMS, and Pfizer. PE has no financial conflicts to disclose. AR acted as a consultant and received honoraria from Novartis Pharmaceuticals Corporation. TM and XF are employees of Novartis Pharmaceuticals Corporation. SN is an employee and stockholder of Novartis Pharmaceuticals Corporation. FJG acted as a consultant and received research funding from Novartis Pharmaceuticals Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hochhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochhaus, A., le Coutre, P.D., Kantarjian, H.M. et al. Effect of the tyrosine kinase inhibitor nilotinib in patients with hypereosinophilic syndrome/chronic eosinophilic leukemia: analysis of the phase 2, open-label, single-arm A2101 study. J Cancer Res Clin Oncol 139, 1985–1993 (2013). https://doi.org/10.1007/s00432-013-1529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1529-7

Keywords

Navigation