Skip to main content

Advertisement

Log in

Identification of vitronectin as a novel serum marker for early breast cancer detection using a new proteomic approach

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer is the most frequent malignancy in women. However, no useful serum markers with high sensitivity and specificity for the detection of early breast cancer have been identified. The search for biological markers of early breast cancer is of continual interest in experimental and clinical breast cancer research. We recently described a simple and highly reproducible three-step proteome analysis for identifying potential disease-marker candidates among the low-abundance serum proteins.

Methods

Serum samples from breast ductal carcinoma in situ (DCIS) patients and normal controls were subjected to a three-step serum proteome analysis. The steps were the following: first, immunodepletion of most abundant proteins; second, fractionation using reverse-phase high-performance liquid chromatography; and third, separation using two-dimensional electrophoresis (2-DE). Differences revealed by protein staining were further confirmed by Western blotting, immunohistochemical staining, and enzyme-linked immunosorbent assays (ELISA).

Results

Twenty-two upregulated and 26 downregulated spots were detected on the 2-DE gels, and a total of 33 proteins were identified by liquid chromatography and tandem mass spectrometry. Western blotting confirmed that the level of vitronectin was significantly increased in DCIS patients compared with that of normal controls. Immunohistochemical staining of vitronectin in breast cancer tissue revealed high expression in small vessel walls surrounding cancer cells and the extracellular matrix of stroma. Moreover, vitronectin serum concentrations, as measured by ELISA, were significantly increased in patients with DCIS or more advanced breast cancer compared with those of normal controls.

Conclusions

Vitronectin could serve as a promising serum marker for the detection of primary breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LC–MS/MS:

Liquid chromatography and tandem mass spectrometry

DCIS:

Ductal carcinoma in situ

ELISA:

Enzyme-linked immunosorbent assay

HPLC:

High-performance liquid chromatography

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

IEF:

Isoelectric focusing

2-DE:

Two-dimensional electrophoresis

ROC:

Receiver-operating characteristics

AU:

Arbitrary units

AUC:

Area under the ROC curve

ER:

Estrogen receptor

PgR:

Progesterone receptor

PAI-1:

Plasminogen activator inhibitor-1

uPAR:

Urokinase plasminogen activator receptor

References

  • Aaboe M, Offersen BV, Christensen A, Andreasen PA (2003) Vitronectin in human breast carcinomas. Biochim Biophys Acta 1638:72–82

    PubMed  CAS  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  PubMed  CAS  Google Scholar 

  • Cho W, Jung K, Regnier FE (2010) Sialylated Lewis x antigen bearing glycoproteins in human plasma. J Proteome Res 9:5960–5968

    Article  PubMed  CAS  Google Scholar 

  • Duffy MJ (2002) Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 48:1194–1197

    PubMed  CAS  Google Scholar 

  • Elmore JG, Armstrong K, Lehman CD, Fletcher SW (2005) Screening for breast cancer. Jama 293:1245–1256

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Wang J, Yang Y, Liu Q, Fan Y, Yu J, Zheng S, Li M, Wang J (2010) Detection and identification of potential biomarkers of breast cancer. J Cancer Res Clin Oncol 136:1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Foekens JA, Schmitt M, van Putten WL, Peters HA, Kramer MD, Jänicke F, Klijn JG (1994) Plasminogen activator inhibitor-1 and prognosis in primary breast cancer. J Clin Oncol 12:1648–1658

    PubMed  CAS  Google Scholar 

  • Freeman WM, Lull ME, Guilford MT, Vrana KE (2006) Depletion of abundant proteins from non-human primate serum for biomarker studies. Proteomics 6:3109–3113

    Article  PubMed  CAS  Google Scholar 

  • Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Oda S, Sadahiro T, Nakamura M, Abe R, Shinozaki K, Nomura F, Tomonaga T, Matsushita K, Kodera Y, Sogawa K, Satoh M, Hirasawa H (2009) YKL-40 identified by proteomic analysis as a biomarker of sepsis. Shock 32:393–400

    Article  PubMed  CAS  Google Scholar 

  • Huai Q, Zhou A, Lin L, Mazar AP, Parry GC, Callahan J, Shaw DE, Furie B, Furie BC, Huang M (2008) Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. Nat Struct Mol Biol 15:422–423

    Article  PubMed  CAS  Google Scholar 

  • Jmeian Y, El Rassi Z (2009) Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids for in-depth proteomics analysis. Electrophoresis 30:249–261 Review

    Article  PubMed  CAS  Google Scholar 

  • Kawashima Y, Fukuno T, Satoh M, Takahashi H, Matsui T, Maeda T, Kodera Y (2009) A simple and highly reproducible method for discovering potential disease markers in low abundance serum proteins. J Electrophoresis 53:13–18

    Google Scholar 

  • Kawashima Y, Fukutomi T, Tomonaga T, Takahashi H, Nomura F, Maeda T, Kodera Y (2010) High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples. J Proteome Res 9:1694–1705

    Article  PubMed  CAS  Google Scholar 

  • Kim BK, Lee JW, Park PJ, Shin YS, Lee WY, Lee KA, Ye S, Hyun H, Kang KN, Yeo D, Kim Y, Ohn SY, Noh DY, Kim CW (2009) The multiple bead array approach to identifying serum biomarkers associated with breast cancer. Breast Cancer Res 11:R22

    Article  PubMed  Google Scholar 

  • Kulasingam V, Diamandis EP (2008) Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 5:588–599

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liu YG, Huang R, Yao C, Li S, Yang W, Yang D, Huang RP (2007) Concurrent down-regulation of Egr-1 and gelsolin in the majority of human breast cancer cells. Cancer Genomics Proteomics 4:377–385

    PubMed  CAS  Google Scholar 

  • Malik G, Ward MD, Gupta SK, Trosset MW, Grizzle WE, Adam BL, Diaz JI, Semmes OJ (2005) Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin Cancer Res 11:1073–1085

    PubMed  CAS  Google Scholar 

  • Martosella J, Zolotarjova N, Liu H, Nicol G, Boyes BE (2005) Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins. J Proteome Res 4:1522–1537

    Article  PubMed  CAS  Google Scholar 

  • Oh-Ishi M, Satoh M, Maeda T (2000) Preparative two-dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins. Electrophoresis 21:1653–1669

    Article  PubMed  CAS  Google Scholar 

  • Paradis V, Degos F, Dargère D, Pham N, Belghiti J, Degott C, Janeau JL, Bezeaud A, Delforge D, Cubizolles M, Laurendeau I, Bedossa P (2005) Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology 41:40–47

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2002) Global cancer statistics. CA Cancer J Clin 55:74–108

    Article  Google Scholar 

  • Ralhan R, Desouza LV, Matta A, Chandra Tripathi S, Ghanny S, Datta Gupta S, Bahadur S, Siu KW (2008) Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry. Mol Cell Proteomics 7:1162–1173

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Haruta-Satoh E, Omori A, Oh-Ishi M, Kodera Y, Furudate S, Maeda T (2005) Effect of thyroxine on abnormal pancreatic proteomes of the hypothyroid rdw rat. Proteomics 5:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger M, Broman I, Lugassy G (1996) The complement system is defective in chronic lymphatic leukemia patients and in their healthy relatives. Leukemia 10:1509–1513

    PubMed  CAS  Google Scholar 

  • Schmitt M, Sturmheit AS, Welk A, Schnelldorfer C, Harbeck N (2006) Procedures for the quantitative protein determination of urokinase and its inhibitor, PAI-1, in human breast cancer tissue extracts by ELISA. Methods Mol Med 120:245–265

    PubMed  CAS  Google Scholar 

  • Søiland H, Janssen EA, Kørner H, Varhaug LE, Skaland I, Gudlaugsson E, Baak JP, Søreide JA (2009) Apolipoprotein D predicts adverse outcome in women > or = 70 years with operable breast cancer. Breast Cancer Res Treat 113:519–528

    Article  PubMed  Google Scholar 

  • Tabar L, Yen MF, Vitak B, Chen HH, Smith RA, Duffy SW (2003) Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet 361:1405–1410

    Article  PubMed  Google Scholar 

  • Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2:1096–1103

    Article  PubMed  CAS  Google Scholar 

  • Umemura H, Nezu M, Kodera Y, Satoh M, Kimura A, Tomonaga T, Nomura F (2009) Effects of the time intervals between venipuncture and serum preparation for serum peptidome analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta 406:179–180

    Article  PubMed  CAS  Google Scholar 

  • Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G (2005) Breast cancer. Lancet 365:1727–1741

    Article  PubMed  Google Scholar 

  • Xu SG, Yan PJ, Shao ZM (2010) Differential proteomics analysis of a highly metastatic variant og human breast cancer cells using two-dimensional differential gel electrophoresis. J Cancer Res Clin Oncol 136:1545–1556

    Article  PubMed  CAS  Google Scholar 

  • Yu YP, Yu G, Tseng G, Cieply K, Nelson J, Defrances M, Zarnegar R, Michalopoulos G, Luo JH (2007) Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res 67:8043–8050

    Article  PubMed  CAS  Google Scholar 

  • Zheng G, Peng F, Ding R, Yu Y, Ouyang Y, Chen Z, Xiao Z, He Z (2010) Identification of proteins responsible for the multiple drug resistance in 5-fluorouracil-induced breast cancer cell using proteomics analysis. J Cancer Res Clin Oncol 136:1477–1488

    Article  PubMed  CAS  Google Scholar 

  • Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC (2005) Differences among techniques for high-abundant protein depletion. Proteomics 5:3304–3313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yoshio Kodera and Mamoru Satoh for their technical assistance and advice for this research.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Kadowaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadowaki, M., Sangai, T., Nagashima, T. et al. Identification of vitronectin as a novel serum marker for early breast cancer detection using a new proteomic approach. J Cancer Res Clin Oncol 137, 1105–1115 (2011). https://doi.org/10.1007/s00432-010-0974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0974-9

Keywords

Navigation