Skip to main content

Advertisement

Log in

Triple expression of B7-1, B7-2 and 4-1BBL enhanced antitumor immune response against mouse H22 hepatocellular carcinoma

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Objectives

Costimulatory signals are essential for T-cell activation and hence play a very important role in antitumor immunity. B7 and 4-1BBL which belongs to tumor necrosis factor (TNF) family provide costimulatory interaction for T-cell activation and function. This study investigated the role of B7 and 4-1BBL in the amplification of tumor immunity by transduction of the B7-1, B7-2 and 4-1BBL into mouse hepatocellular carcinoma cell line H22.

Methods

The tumorigenicity of H22 variants expressing either B7-1, B7-2 (H22/B7-1/B7-2) or 4-1BBL was compared with an H22 variant expressing B7-1, B7-2 and 4-1BBL (H22/B7-1/B7-2/4-1BBL). The study next investigated whether the combination of B7-1/B7-2 and 4-1BBL cell injection induced cytotoxic T lymphocyte (CTL) response and IL-2/IFN-γ secretion. The immune mechanisms underlying this combination treatment were then analyzed.

Results

Syngeneic BALB/c mice injected with H22/B7-1/B7-2/4-1BBL cells that expressed elevated levels of B7-1, B7-2 and 4-1BBL showed a tumor development frequency of 50% compared with 100% in mice injected with the H22 parental line, H22/neo, H22/B7-1/B7-2 and H22/4-1BBL. Mice inoculated with H22 tumor cells expressing B7-1, B7-2 and 4-1BBL developed a strong cytotoxic T lymphocyte response and long-term immunity against wild-type tumor, suggesting a synergistic effect between the B7 and 4-1BBL costimulatory pathways. Results showed that H22/B7-1/B7-2/4-1BBL tumor vaccines probably protect the infiltrating lymphocytes from apoptosis and induce NF-κB activation to improve T-cell-mediated antitumor response.

Conclusions

In this study, the antitumor consequences of using B7-1, B7-2 and 4-1BBL gene transfer have demonstrated the therapeutic potential of gene therapy approach for hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arch RH, Thompson CB (1998) 4–1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol Cell Biol 18(1):558–565

    PubMed  CAS  Google Scholar 

  • Bertram EM, Lau P, Watts TH (2002) Temporal segregation of 4–1BB versus CD28-mediated costimulation: 4–1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol 168(8):3777–3785

    PubMed  CAS  Google Scholar 

  • Bertram EM, Dawicki W, Sedgmen B, Bramson JL, Lynch DH, Watts TH (2004) A switch in costimulation from CD28 to 4–1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol 172(2):981–988

    PubMed  CAS  Google Scholar 

  • Cannons JL, Choi Y, Watts TH (2000) Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4–1BB-dependent immune response. J Immunol 165(11):6193–6204

    PubMed  CAS  Google Scholar 

  • Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 3(8):609–620

    Article  PubMed  CAS  Google Scholar 

  • Curry HA, Clemens RA, Shah S, Bradbury CM, Botero A, Goswami P, Gius D (1999) Heat shock inhibits radiation-induced activation of NF-kappaB via inhibition of I-kappaB kinase. J Biol Chem 274(33):23061–23067

    Article  PubMed  CAS  Google Scholar 

  • Dawicki W, Watts TH (2004) Expression and function of 4–1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol 34(3):743–751

    Article  PubMed  CAS  Google Scholar 

  • Disis ML, Bernhard H, Jaffee EM (2009) Use of tumour-responsive T cells as cancer treatment. Lancet 373(9664):673–683

    Article  PubMed  CAS  Google Scholar 

  • Finney HM, Akbar AN, Lawson AD (2004) Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 172(1):104–113

    PubMed  CAS  Google Scholar 

  • Foreman KE, Wrone-Smith T, Krueger AE, Nickoloff BJ (1999) Expression of costimulatory molecules CD80 and/or CD86 by a Kaposi’s sarcoma tumor cell line induces differential T-cell activation and proliferation. Clin Immunol 91(3):345–353

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara K, Higashi T, Nouso K, Nakatsukasa H, Kobayashi Y, Uemura M, Nakamura S, Sato S, Hanafusa T, Yumoto Y, Naito I, Shiratori Y (2004) Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma. J Gastroenterol Hepatol 19(10):1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23(1):515–548

    Article  PubMed  Google Scholar 

  • Guinn BA, DeBenedette MA, Watts TH, Berinstein NL (1999) 4–1BBL cooperates with B7–1 and B7–2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. J Immunol 162(8):5003–5010

    PubMed  CAS  Google Scholar 

  • Kane LP, Lin J, Weiss A (2002) It’s all Rel-ative: NF-kappaB and CD28 costimulation of T-cell activation. Trends Immunol 23(8):413–420

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff S, Muller WW, Li-Weber M, Krammer PH (2000) Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur J Immunol 30(10):2765–2774

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Yang XW, Chen Z, Dong HL, Ye J, Qu P, Lu SY, Zhang XM, Sui YF (2004) In vivo tumor co-transfection with superantigen and CD80 induces systemic immunity without tolerance and prolongs survival in mice with hepatocellular carcinoma. Cancer Biol Ther 3(7):660–666

    Article  PubMed  CAS  Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390

    Article  PubMed  CAS  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501

    Article  PubMed  CAS  Google Scholar 

  • Marinari B, Costanzo A, Marzano V, Piccolella E, Tuosto L (2004) CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF-kappaB subunits on IL-8 and Bcl-xL gene promoters. Proc Natl Acad Sci U S A 101(16):6098–6103

    Article  PubMed  CAS  Google Scholar 

  • Martin-Fontecha A, Moro M, Crosti MC, Veglia F, Casorati G, Dellabona P (2000) Vaccination with mouse mammary adenocarcinoma cells coexpressing B7–1 (CD80) and B7–2 (CD86) discloses the dominant effect of B7–1 in the induction of antitumor immunity. J Immunol 164(2):698–704

    PubMed  CAS  Google Scholar 

  • Melero I, Bach N, Hellstrom KE, Aruffo A, Mittler RS, Chen L (1998) Amplification of tumor immunity by gene transfer of the co-stimulatory 4–1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur J Immunol 28(3):1116–1121

    Article  PubMed  CAS  Google Scholar 

  • Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106

    Article  PubMed  CAS  Google Scholar 

  • Mogi S, Sakurai J, Kohsaka T, Enomoto S, Yagita H, Okumura K, Azuma M (2000) Tumour rejection by gene transfer of 4–1BB ligand into a CD80(+) murine squamous cell carcinoma and the requirements of co-stimulatory molecules on tumour and host cells. Immunology 101(4):541–547

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Frey K, Kontermann RE (2008) A novel antibody-4–1BBL fusion protein for targeted costimulation in cancer immunotherapy. J Immunother 31(8):714–722

    Article  PubMed  Google Scholar 

  • Okkenhaug K, Wu L, Garza KM, La Rose J, Khoo W, Odermatt B, Mak TW, Ohashi PS, Rottapel R (2001) A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat Immunol 2(4):325–332

    Article  PubMed  CAS  Google Scholar 

  • Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21(1):807–839

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics. CA Cancer J Clin 55(2):74–108

    Article  PubMed  Google Scholar 

  • Plas DR, Rathmell JC, Thompson CB (2002) Homeostatic control of lymphocyte survival: potential origins and implications. Nat Immunol 3(6):515–521

    Article  PubMed  CAS  Google Scholar 

  • Schultze J, Nadler LM, Gribben JG (1996) B7-mediated costimulation and the immune response. Blood Rev 10(2):111–127

    Article  PubMed  CAS  Google Scholar 

  • Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, Pearson TC, Ledbetter JA, Aruffo A, Mittler RS (1997) 4–1BB costimulatory signals preferentially induce CD8 + T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186(1):47–55

    Article  PubMed  CAS  Google Scholar 

  • Starck L, Scholz C, Dorken B, Daniel PT (2005) Costimulation by CD137/4–1BB inhibits T cell apoptosis and induces Bcl-xL and c-FLIP(short) via phosphatidylinositol 3-kinase and AKT/protein kinase B. Eur J Immunol 35(4):1257–1266

    Article  PubMed  Google Scholar 

  • Takahashi C, Mittler RS, Vella AT (1999) Cutting edge: 4–1BB is a bona fide CD8 T cell survival signal. J Immunol 162(9):5037–5040

    PubMed  CAS  Google Scholar 

  • Tamada K, Chen L (2006) Renewed interest in cancer immunotherapy with the tumor necrosis factor superfamily molecules. Cancer Immunol Immunother 55(4):355–362

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi T, Takehara T, Katayama K, Mochizuki K, Yamamoto M, Kanto T, Sasaki Y, Kasahara A, Hayashi N (1997) Expression of costimulatory molecules B7–1 (CD80) and B7–2 (CD86) on human hepatocellular carcinoma. Hepatology 25(5):1108–1114

    Article  PubMed  CAS  Google Scholar 

  • Wan YY, DeGregori J (2003) The survival of antigen-stimulated T cells requires NFkappaB-mediated inhibition of p73 expression. Immunity 18(3):331–342

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by National Natural Science Foundation of China (No. 30901442); Natural Science Foundation of Jiansu Province (No. BK2009439); and Open Foundation from Health Department, Jiangsu Province (No. ZX05 200901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yin or Xuehao Wang.

Additional information

Guoqiang Li and Xiaofeng Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Wu, X., Zhang, F. et al. Triple expression of B7-1, B7-2 and 4-1BBL enhanced antitumor immune response against mouse H22 hepatocellular carcinoma. J Cancer Res Clin Oncol 137, 695–703 (2011). https://doi.org/10.1007/s00432-010-0905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0905-9

Keywords

Navigation