Skip to main content

Advertisement

Log in

High-efficiency transfer and expression of AdCMV-p53 in human cervix adenocarcinoma cells induced by subclinical-dose carbon beam radiation

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to evaluate the effect of carbon-beam irradiation on adenovirus-mediated p53 transfer in human cervix adenocarcinoma.

Materials and methods

The HeLa cells pre-exposed to carbon-beam or γ-ray, were infected with replication-deficient adenovirus recombinant vectors, containing human wild-type p53 (AdCMV-p53) and green fluorescent protein (GFP) (AdCMV–GFP), respectively. The GFP transfer and p53 expression were detected by flow cytometric analysis.

Results

The GFP transfer frequency in C-beam with AdCMV-GFP groups was 38–50% more than that in γ-ray with AdCMV–GFP groups. The percentage of p53 positive cells in the C-beam with AdCMV–p53 groups was 34–55.6% more than that in γ-ray with AdCMV-p53 groups (p < 0.05), suggesting that subclinical-dose C-beam irradiation could significantly promote exogenous p53 transfer and p53 expression, and extend the duration of p53 expression in the HeLa cells. The expression of p21 increased with p53 expression in HeLa cells. The survival fractions for the 0.5–1.0 Gy C-beam with AdCMV-p53 groups were 38–43% less than those for the isodose γ-ray with AdCMV-p53 groups, and 31–40% less than those for the C-beam only groups (p < 0.05).

Conclusions

The subclinical-dose C-beam irradiation could significantly promote the transfer and expression of exogenous p53, extend the duration of p53 expression, and enhance the suppression of p53 on cervix adenocarcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander IE, David W, Russell A (1994) DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J Virol 68:8282–8287

    PubMed  CAS  Google Scholar 

  • Badie B, Goh CS, Klaver J, Herweijer H, Boothman DA (1999) Combined radiation and p53 gene therapy of malignant glioma cells. Cancer Gene Ther 6:155–162. doi:10.1038/sj.cgt.7700009

    Article  PubMed  CAS  Google Scholar 

  • Boulay JL, Perruchoud AP, Reuter J, Bolliger C, Herrmann R, Rochlitz C (2000) P21 gene expression as an indicator for the activity of adenovirus-p53 gene therapy in non-small cell lung cancer patients. Cancer Gene Ther 7:1215–1219. doi:10.1038/sj.cgt.7700227

    Article  PubMed  CAS  Google Scholar 

  • Brough DE, Lizonova A, Hsu C, Kulesa VA, Kovesdi I (1996) A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions E1 and E4. J Virol 70:6497–6501

    PubMed  CAS  Google Scholar 

  • Canaday D, Li P, Weichselbaum R, Dean AR, Lee RC (1994) Membrane permeability changes in gamma-irradiated muscle cells. Ann NY Acad Sci 1:153–159. doi:10.1111/j.1749-6632.1994.tb30443.x

    Article  Google Scholar 

  • Couch RB, Chanock RM, Cate TT, Lang DJ, Knight V, Huembner RJ (1963) Immunization with types 4, 7 adenovirus by selective infection of the intestinal tract. Am Rev Respir Dis 88:394–403

    PubMed  Google Scholar 

  • Debenham PG, Webb MBT (1984) The effect of X-rays and ultraviolet light on DNA-mediated gene transfer in mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med 46:555–568

    Google Scholar 

  • Doerfler V (1993) Adenoviral DNA integration and changes in DNA methylation patterns: a different view of insertional muta-genesis. Prog Nucleic Acid Res Mol Biol 46:1–36. doi:10.1016/S0079-6603(08)61016-8

    Article  PubMed  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825

    Google Scholar 

  • Friedman T (1989) Progress toward human gene therapy. Science 244:1275–1281

    Article  Google Scholar 

  • Gallardo D, Drazan KE, McBride WH (1996) Adenovirus-based transfer of wild-type p53 gene increases ovarian tumor radiosensitivity. Cancer Res 56:4891–4893

    PubMed  CAS  Google Scholar 

  • Iwamoto R, Fushimi K, Hiraki Y, Namba M (1977) Enhancement of DNA-transfection frequency by X-rays. Acta Med Okayama 51(1):19–23

    Google Scholar 

  • Iwadate Y, Mizoe J, Osaka Y, Yamaura A, Tsujii H (2001) High linear energy transfer carbon radiation effectively kills cultured glioma cells with either mutant or wild-type p53. Int J Radiat Oncol Biol Phys 50:803–808

    PubMed  CAS  Google Scholar 

  • Jakus J, Yeudall WA (1996) Growth inhibitory concentrations of EGF induce p21 (WAK1/Cip1) and alter cell cycle control in squamous carcinoma cells. Oncogene 12:2369–2376

    PubMed  CAS  Google Scholar 

  • Jiang H, Lin J, Su ZZ, Collart FR, Huberman E, Fisher PB (1994) Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21 WAF1/CIP1 expression in absence of p53. Oncogene 9:3397–3406

    PubMed  CAS  Google Scholar 

  • Kamada T, Tsujii H, Tsuji H, Yanagi T, Mizoe J, Miyamoto T, Kato H, Yamada S, Morita S, Yoshikawa K, Kandatsu S, Tateishi A (2002) Efficacy and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. J Clin Oncol 20:4466–4471

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteripphage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Li J-H, Lax SA, Kim J, Klamut H, Liu FF (1999) The effects of ionizing radiation and adenoviral p53 therapy in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 43:607–616

    PubMed  CAS  Google Scholar 

  • Liu B, Zhang H, Li WJ, Gao QX, Min FL, Xie Y, Hao JF, Zhou QM, Duan X, Zhou GM (2006) Irradiation of human colorectal adenocarcinoma cells with AdCMV-p53 gene transfection induced by irradiation. Nuclear Techniques 9:674–679 (Chinese)

    Google Scholar 

  • Liu B, Zhang H, Li WJ, Li Q, Zhou GM, Xie Y, Hao JF, Min FL, Zhou QM, Duan X (2007) Pre-irradiation with low-dose 12C6+ beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer. Sci China Ser G 50(2):221–230

    Article  CAS  Google Scholar 

  • Miller AD (1992) Human gene therapy comes of age. Nature 357:455–460

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki M, Abe A, Suzuki Y, Morita S, Mizoe J, Sato S, Miyamoto T, Kamada T, Kato H, Tsujii H (1999) The phase I/II clinical study of carbon ion therapy for cancer of the uterine cervix Cancer. J Sci Am 5:362–369

    CAS  Google Scholar 

  • Natsugoe S, Nakashima S, Matsumoto M, Xiangming C, Okumura H, Kijima F, Ishigami S, Takebayashi Y, Baba M, Takao S, Aikou T (1999) Expression of p21WAF1/Cip1 in the p53-dependent pathway is related to prognosis in patients with advanced esophageal carcinoma. Clin Cancer Res 5:2445–2449

    PubMed  CAS  Google Scholar 

  • Nemunaitis J, Swisher SG, Timmons T, Connors D, Mack M, Doerksen L (2000) Adenovirus mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 18:609–622

    PubMed  CAS  Google Scholar 

  • Nielsen LL, Dell J, Maxwell E, Armstrong L, Maneval D, Catino JJ (1997) Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther 4:129–138

    PubMed  CAS  Google Scholar 

  • Nishi T, Yoshizato K, Yamashiro S, Takeshima K, Sato K, Hamada K, Kitamura I, Yoshimura T, Saya H, Kuratsu J, Ushio Y (1996) High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res 56:1050–1055

    PubMed  CAS  Google Scholar 

  • Oohira G, Yamada S, Ochiai T, Matsubara H, Okazumi S, Ando K, Tsujii H, Hiwasa T, Shimada H (2004) Growth suppression of esophageal squamous cell carcinoma induced by heavy C-beam beams combined with p53 gene transfer. Int J Onocol 25:563–569

    CAS  Google Scholar 

  • Pirollo KF, Hao Z, Rait Jang YJ, Fee WEJ, Ryan P, Chiang Y, Chang EH (1997) p53 mediated sensitization of squamous cell carcinoma of the head, and neck radiotherapy. Oncogene 14:1735–1746

    Article  PubMed  CAS  Google Scholar 

  • Qian J, Yang J, Dragovic AF, Abu-Isa E, Lawrence TS, Zhang M (2005) Ionizing radiation-induced adenovirus infection is mediated by dynamin 2. Cancer Res 65:5493–5497

    Article  PubMed  CAS  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AT, Howlay PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Schulz-Ertner D, Nikoghosyan A, Thilmann C, Haberer T, Jakel O, Karger C, Scholz M, Kraft G, Wannenmacher M, Debus J (2003) Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Results in 67 patients. Strahlenther Onkol 179:598–605

    Article  PubMed  Google Scholar 

  • Schulz-Ertner D, Nikoghosyan A, Thilmann C, Haberer T, Jakel O, Karger C, Kraft G, Wannenmacher M, Debus J (2004) Results of carbon ion radiotherapy in 152 patients. Int J Radiat Oncol Biol Phys 58:631–640

    PubMed  Google Scholar 

  • Sheikh MS, Rochefort H, Garcia M (1995) Overexpression of p21WAF1/CIP1 induces growth arrest, giant cell formation and apoptosis in human breast carcinoma cell lines. Oncogene 11:1899–1905

    PubMed  CAS  Google Scholar 

  • Spitz FR, Nguyen D, Skibber JM, Meyn RE, Cristiano RJ, Roth JA (1996) Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 2:1665–1671

    PubMed  CAS  Google Scholar 

  • Turek LP, Smith EM (1996) The genetic program of genital human papilomaviruss in infection and cancer. Obstet Gynecol Clin North Am 23:735–758

    Article  PubMed  CAS  Google Scholar 

  • Umebayashi Y, Miyamoto Y, Wakita M, Kobayashi A, Nishisaka T (2003) Elevation of Plasma Membrane Permeability on Laser Irradiation of Extracellular Latex Particles. J Biochem 2:219–224

    Article  Google Scholar 

  • Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–90

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM (1993) Vehicles for gene therapy. Nature 365:691–692

    Article  PubMed  CAS  Google Scholar 

  • Zeng M, Cerniglia GJ, Eck SL, Stevens CW (1997) High-efficiency stable gene transfer of adenovirus into mammalian cells using ionizing radiation. Human Gene Ther 8:1025–1032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (10675151) and the Key Scientific Technology Research Project of Gansu Province (2GS052-A43-008-02), and the Nature Science Foundation of Gansu Province (3ZS061-A25-021). We express our thanks to the accelerator crew at the HIRFL, National Laboratory of Heavy Ion Accelerator in Lanzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Zhang, H., Luo, X. et al. High-efficiency transfer and expression of AdCMV-p53 in human cervix adenocarcinoma cells induced by subclinical-dose carbon beam radiation. J Cancer Res Clin Oncol 135, 925–932 (2009). https://doi.org/10.1007/s00432-008-0528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-008-0528-6

Keywords

Navigation