Skip to main content

Advertisement

Log in

Potential tumor markers for human gastric cancer: an elevation of glycan:sulfotransferases and a concomitant loss of α1,2-fucosyltransferase activities

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Several reports indicate a complexity in glycosyltransferase activities which lead to several tumor associated carbohydrate structures in gastric carcinoma. The present study was aimed to identify the carbohydrate associated transferases which exhibit the most marked and consistent change of activity in gastric tumorigenesis.

Methods

We examined the levels of fucosyl, β-galactosyl-, β-N-acetylgalactosaminyl, sialyl- and glycan:sulfotransferase activities, which generate the outer ends of oligosaccharide chains in tumorous and adjacent normal gastric tissues of the same patient in ten gastric carcinoma cases by using well defined specific synthetic acceptors utilized in our several earlier published studies as referenced in the text (e.g. Chandrasekaran et al. in J Biol Chem 279:10032–10041, 2004; Biochemistry 44:15619–15635, 2005; Carbohydr Res 341:983–994, 2006).

Results

Among glycosyltransferases only α1,2-fucosyltransferase (FT) was unique in showing a remarkable 40–90% decrease of activity in seven cases. Uniquely several fold elevation of Gal3Sulfo-T2 (1.9 → 156.7 fold) and Gal3Sulfo-T4 (2.4 → 149.0 fold) activities in all ten cases and moderate elevation of GlcNAc6Sulfo-T (1.3 → 37.5 fold) activities in nine cases were identified. Poorly differentiated Signet ring cell carcinoma expresses mainly Gal3Sulfo-T2 activity whereas poorly differentiated adenocarcinoma express predominantly Gal3Sulfo-T4 activity and also GlcNAc6Sulfo-T activity. But, very low level of these sulfotransferase activities were identified in moderately differentiated gastric carcinomas as well as non-epithelial gastric stromal sarcoma.

Conclusion

Up regulation of glycan:sulfotransferase activities and down regulation of α1,2-fucosyltransferase activity are apparently associated with human gastric tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen HJ, Ahmed H, Matta KL (1998) Binding of synthetic sulfated ligands by human splenic galectin 1, a β-galactoside-binding lectin. Glycoconj J 15:691–695

    Article  PubMed  CAS  Google Scholar 

  • Amado M, Carneiro F, Seixas M, Clausen H, Sobrinho-Simoes M (1998) Dimeric sialyl-Le(x) expression in gastric carcinoma correlates with venous invasion and poor outcome. Gastroenterology 114:462–470

    Article  PubMed  CAS  Google Scholar 

  • Campanero-Rhodes MA, Childs RA, Kiso M, Komba S, Narvor CL, Warren J, Otto D, Crocker PR, Feizi T (2006) Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem Biophys Res Commun 292:1141–1146

    Article  Google Scholar 

  • Carvalho F, David L, Aubert JP, Lopez-Ferrer A, De Bolos C, Reis CA, Gartner F, Peixoto A, Alves P, Sobrinho-Simoes M (1999) Mucins and mucin-associated carbohydrate antigens expression in gastric carcinoma cell lines. Virchows Arch 435:479–485

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran EV, Jain RK, Larsen RD, Wlasichuk K, Matta KL (1995) Selectin-ligands and tumor associated carbohydrate structures: specificities of α2,3-sialyltransferases in the assembly of 3′-sialyl, 6-sulfo/sialyl Lewis a and x, 3′-sialyl, 6′-sulfo Lewis x and 3′-sialyl, 6-sialyl/sulfo blood group T-hapten. Biochemistry 34:2925–2936

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran EV, Jain RK, Larsen RD, Wlasichuk K, DiCioccio RA, Matta KL (1996) Specificity analysis of three clonal and five non-clonal α1,3-l-fucosyltransferases with sulfated, sialylated, or fucosylated synthetic carbohydrates as acceptors in relation to the assembly of 3′-sialyl-6′-sulfo Lewis x (the l-selectin ligand) and related complex structures. Biochemistry 35:8925–8933

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran EV, Jain RK, Vig R, Matta KL (1997) The enzymatic sulfation of glycoprotein carbohydrate units: blood group T-hapten specific and two other distinct Gal:3-O-sulfotransferases as evident from specificities and kinetics and the influence of sulfate and fucose residues occurring in the carbohydrate chain on C-3 sulfation of terminal Gal. Glycobiology 7:753–768

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran EV, Chawda R, Piskorz C, Locke RD, Ta A, Sharad G, Odunsi K, Lele S, Matta KL (2001) Human ovarian cancer, lymphoma spleen, and bovine milk GlcNAc:β1,4Gal/GalNAc transferases: two molecular species in ovarian tumor and induction of GalNAcβ1,4Glc synthesis by α-lactalbumin. Carbohydr Res 334:105–118

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran EV, Lakhaman SS, Chawda R, Piskorz CF, Neelamegham S, Matta KL (2004) Identification of physiologically relevant substrates for cloned Gal:3-O-sulfotransferases (Gal3STs): distinct high affinity of Gal3ST-2 and LS180 sulfotransferase for the Globo H backbone, Gal3ST-3 for N-glycan multiterminal Galβ1, 4GlcNAcβ- units and 6-sulfoGalβ1, 4GlcNAcβ-, and Gal3ST-4 for the mucin core-2 trisaccharide. J Biol Chem 279:10032–10041

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran EV, Xue J, Xia J, Chawda R, Piskorz C, Locke RD, Neelamegham S, Matta KL (2005) Analysis of the specificity of sialyltransferases toward mucin Core2, Globo, and related structures. Identification of the sialylation sequence and the effects of sulfate, fucose, methyl and fluoro substituents of the carbohydrate chain in the biosynthesis of selectin and siglec ligands and novel sialylation by cloned α2,3(O)sialyltransferase. Biochemistry 44:15619–15635

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran EV, Xue J, Neelamegham S, Matta KL (2006) The pattern of glycosyl- and sulfotransferase activities in cancer cell lines: a predictor of individual cancer-associated distinct carbohydrate structures for the structural identification of signature glycans. Carbohydr Res 341:983–994

    Article  PubMed  CAS  Google Scholar 

  • Comelli EM, Head SR, Gilmartin T, Whisenant T, Haslam SM, North SJ, Wong N, Kudo T, Narimatsu H, Esko JD, Drickamer K, Dell A, Paulson JC (2006) A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16:117–131

    Article  PubMed  CAS  Google Scholar 

  • Davis DW, McConkey DJ, Zhang W, Herbst RS (2003) Antiangiogenic tumor therapy. BioTechniques 34:1048–1063

    PubMed  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  • Fuchs CS, Mayer RJ (1995) Gastric carcinoma. N Engl J Med 333:32–41

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M (1996) Possible roles of tumor-associated carbohydrate antigens. Cancer Res 56:2237–2244

    PubMed  CAS  Google Scholar 

  • Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 99:10231–10233

    Article  PubMed  CAS  Google Scholar 

  • Hippo Y, Yashiro M, Ishii M, Taniguchi H, Tsutsumi S, Hirakawa K, Kodama T, Aburatani H (2001) Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res 61:889–895

    PubMed  CAS  Google Scholar 

  • Hiraiwa N, Dohi T, KawakamiKimura N, Yumen M, Ohmori K, Maeda M, Kannagi R (1996) Suppression of sialyl Lewis X expression and E-selectin-mediated cell adhesion in cultured human lymphoid cells by transfection of antisense cDNA of an alpha1 → 3 fucosyltransferase (Fuc-T VII). J Biol Chem 271:31556–31561

    Article  PubMed  CAS  Google Scholar 

  • Ideo H, Seko A, Ohkura T, Matta KL, Yamashita K (2002) High-affinity binding of recombinant human galectin-4 to SO3- → 3Galβ1 → 3GalNAc pyranoside. Glycobiology 12:199–208

    Article  PubMed  CAS  Google Scholar 

  • Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, Glinsky GV, Sriramarao P (2003) MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigen–galecin-3 interactions. J Biol Chem 278:27–4134

    Article  Google Scholar 

  • Kobayashi T, Honke K, Tsunematsu I, Kagaya H, Nishikawa S, Hokari K, Kato M, Takeda H, Sugiyama T, Higuchi A, Asaka M (1999) Detection of cerebroside sulfotransferase mRNA in human gastric mucosa and adenocarcinoma. Cancer Lett 138:45–51

    Article  PubMed  CAS  Google Scholar 

  • Lahm H, André S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, Gabius HJ (2001) Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res Clin Oncol 127:375–386

    Article  PubMed  CAS  Google Scholar 

  • Layke JC, Lopez PP (2004) Gastric cancer: diagnosis and treatment options. Am Fam Physician 69:1133–1140

    PubMed  Google Scholar 

  • Natomi H, Saitoh T, Sugano K, Iwamori M, Fukayama M, Nagai Y (1993) Systemic analysis of glycosphingolipids in the human gastrointestinal tract: enrichment of sulfatides with hydroxylated longer-chain fatty acids in the gastric and duodenal mucosa. Lipids 28:737–742

    Article  PubMed  CAS  Google Scholar 

  • O’Hanlon TP, Lau KM, Wang XC, Lau JT (1989) Tissue-specific expression of beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 264:17289–17394

    Google Scholar 

  • Palcic MM, Heerze LD, Pierce M, Hindsgaul O (1988) The use of hydrophobic synthetic glycosides as acceptors in glycosyltransferase assays. Glycoconj J 5:49–63

    Article  CAS  Google Scholar 

  • Paulson JC, Weinstein J, Schauer A (1989) Tissue-specific expression in of sialyltransferases. J Biol Chem 264:10931–10934

    PubMed  CAS  Google Scholar 

  • Petretti T, Schulze B, Schlag PM, Kemmner W (1999) Altered mRNA expression of glycosyltransferases in human gastric carcinomas. Biochim Biophys Acta 1428:209–218

    PubMed  CAS  Google Scholar 

  • Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  • Santos-Silva F, Fonseca A, Caffrey T, Carvalho F, Mesquita P, Reis C, Almeida R, David L, Hollingsworth MA (2005) Thomsen–Friedenreich antigen expression in gastric carcinomas is associated with MUC1 mucin VNTR polymorphism. Glycobiology 15:511–517

    Article  PubMed  CAS  Google Scholar 

  • Sogn JA, Anton-Culver H, Singer DS (2005) Meeting reports: NCI think tanks in cancer biology. Cancer Res 65:9117–9120

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi N, Yoshimura M, Miyoshi E, Ihara Y, Nishikawa A, Fuji S (1996) Remodeling of cell surface glycoproteins by N-acetylglucosaminyltransferase III gene transfection: modulation of metastatic potentials and down regulation of hepatitis B virus replication. Glycobiology 6:691–694

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M (1999) MUC1 and cancer. Biochim Biophys Acta 1455:301–313

    PubMed  CAS  Google Scholar 

  • Werther JL, Tatematsu M, Klein R, Kurihara M, Kumagai K, Llorens P, Neto JG, Bodian C, Pertsemlidis D, Yamachika T, Kitou T, Zkowitz S (1996) Sialosyl-Tn antigen as a marker of gastric cancer progression: an international study. Int J Cancer 69:193–199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH (USA) Grant CA35329 and Comprehensive Cancer Center Support Grant CA160561. We thank Ms. Charlene Romanello for her excellent secretarial assistance, and Ms. Nancy Reska for her invaluable technical assistance in the Tissue Procurement Resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushi L. Matta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekaran, E.V., Xue, J., Piskorz, C. et al. Potential tumor markers for human gastric cancer: an elevation of glycan:sulfotransferases and a concomitant loss of α1,2-fucosyltransferase activities. J Cancer Res Clin Oncol 133, 599–611 (2007). https://doi.org/10.1007/s00432-007-0206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-007-0206-0

Keywords

Navigation