Skip to main content

Advertisement

Log in

Quantitation of synergism of arabinosylcytosine and cladribine against the growth of arabinosylcytosine-resistant human lymphoid cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

This report presents a quantitative analysis of the synergistic interaction of arabinosylcytosine (araC) and cladribine (CdA) in human H9-lymphoid cell lines sensitive and resistant to araC (H9-araC cells). H9-araC cells obtained by cultivation of H9 cells in the presence of 0.5 μM arabinosylcytosine (araC) had lower deoxycytidine kinase (dCK) than the parental cell line. The IC50 values of araC and CdA calculated by using median-effect analysis and CalcuSyn software were: 0.55 μM and 1.16 μM for CdA and 0.0058 μM and 3.5 μM for araC in H9 and H9-araC cells, respectively. These values were reduced to 0.10 μM and 0.38 μM for CdA and to 0.004 μM and to 0.77 μM for araC when the drugs were used in combination. Computerized simulation of dose reduction index (DRI) indicated that at 50–99% growth inhibition levels, the doses of araC could be reduced by 2.0 to 11.9-fold and 2.9 to 5.3-fold and the doses of CdA by 5.9 and 183.7-fold and 3.1 to 164.8-fold in H9 and H9-araC cells, respectively, when the drugs are used in combination. Assessment by combination index (CI) analysis showed that the combination exhibited moderate to strong synergistic lympho-cytotoxic effects. CdA metabolic studies (influx and activation) in the presence of deoxyadenosine, deoxycytidine, or araC suggested that CdA enters cells by a deoxyadenosine-inhibitable transport system, which is different than that of araC and deoxycytidine transport system. Thus, in addition to the known mechanisms, other mechanisms might be involved in the metabolism of CdA. The demonstration that araC and CdA combinations exert synergistic cytotoxicity even in the resistant cells raises hope that such a combination may be useful in tumors that were found resistant to these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

araC:

Arabinosylcytosine

araCTP:

Arabinosylcytosine 5′-triphosphate

CdA:

2-Chloro-2′-deoxyadenosine (Cladribine)

CdAMP, CdADP, CdATP:

Mono-, di-, and tri-phosphates of CdA

CI:

Combination index

dA:

2′-Deoxyadenosine

dC:

2′-Deoxycytidine

dCK:

Deoxycytidine kinase

DRI:

Dose reduction index

dG:

Deoxyguanosine

hENT1 and hENT2:

Human equilibrative nucleoside transporter 1 and 2

PBS:

Phosphate buffered saline

References

  • Agarwal RP, Wang W, Yo P, Han T, Fernandez M (1999) Cross resistance of dideoxycytidine resistant cell lines to azidothymidine. Biochem Pharmacol 58:1603–1608

    Article  PubMed  CAS  Google Scholar 

  • Agarwal RP, Han T, Fernandez M (2001) Reduced cellular transport and activation of fluoropyrimidine nucleosides and resistance in human lymphocytic cell lines selected for arabinosyl-cytosine resistance. Biochem Pharmacol 61:39–47

    Article  PubMed  CAS  Google Scholar 

  • Arnér ES (1996) On the phosphorylation of 2-chlorodeoxyadenosine (CdA) and its correlation with clinical response in leukemia treatment. Leuk Lymphoma 21:225–231

    Article  PubMed  Google Scholar 

  • Avery TL, Rehg JE, Lumm WC, Harwood FC, Santana VM, Blakley RL (1989) Biochemical pharmacology of 2-chlorodeoxyadenosine in malignant human hematopoietic cell lines and therapeutic effects of 2-bromodeoxyadenosine in drug combinations in mice. Cancer Res 49:4972–4978

    PubMed  CAS  Google Scholar 

  • Beutler E (1992) Cladribine (2-chlorodeoxyadenosine). Lancet 340:952–956

    Article  PubMed  CAS  Google Scholar 

  • Bohman C, Eriksson S (1988) Deoxycytidine kinase from human leukemic spleen: preparations and characteristics of homogenous enzyme. Bichemistry 27:4258–4265

    Article  CAS  Google Scholar 

  • Carrera CJ, Piro LD, Saven A, Beutler E, Terai C, Carson DA (1991) 2-Chloro-deoxyadenosine chemotherapy triggers programmed cell death in normal and malignant lymphocytes. Adv Exp Med Biol 309(A):15–18

    Google Scholar 

  • Carson DA, Wasson DB, Kaye J, Ullman B, Martin DW Jr, Robins RK, Montogomery JA (1980) Deoxycytidine kinase mediated toxicity of deoxyadenosine analogs toward malignant human lymphoblasts in vitro and toward murine L1210 leukemias in vivo. Proc Natl Acad Sci USA 77:6865–6869

    Article  PubMed  CAS  Google Scholar 

  • Carson DA, Wasson DB, Taetle R, Yu A (1983) Specific toxicity of 2-chloro-deoxyadenosine toward resting and proliferating human lymphocytes. Blood 62:737–743

    PubMed  CAS  Google Scholar 

  • Chou TC (1991) Quantitation of synergism and antagonism of two or more drugs by computerized analysis. In: Chou TC, Rideout DC (eds) Synergism and Antagonism in Chemotherapy. Academic, New York, pp 223–244

    Google Scholar 

  • Chou TC (1998) Drug combinations: from laboratory to practice. J Lab Clin Med 131:6–8

    Article  Google Scholar 

  • Chou TC, Hayball M (1996) CalcuSyn for Windows, Multiple-Drug Dose-Effect Analyzer and Manual. Biosoft, Cambridge Place, Cambridge

    Google Scholar 

  • Chou TC, Talalay P (1987) Applications of the median–effect principle for the assessment of low-dose risk of carcinogens and for the quantitation of synergism and antagonism of chemotherapeutic agents. In: Harrap KR, Connors TA (eds) New avenues of developmental cancer chemotherapy, Bristol-myers symposium series. Academic, New York, pp 37–64

    Google Scholar 

  • Chou TC, Motzer RJ, Tong Y, Bosl GJ (1994) Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst 86:1517–1524

    Article  PubMed  CAS  Google Scholar 

  • Chow KU, Boehrer S, Napieralski S, Nowak D, Knau A, Hoelzer D, Mitrou PS, Weidmann E (2003) In AML cell lines araC combined with purine analogues is able to exert synergistic as well as antagonistic effects on proliferation, apoptosis and disruption of mitochondrial membrane potential. Leuk Lymphoma 44:165–173

    Article  PubMed  CAS  Google Scholar 

  • Chunduru SK, Appleman JR, Blakley RL (1993) Activity of human DNA polymerase alpha and beta with 2-chloro-2′-deoxyadenosine 5′-triphosphate and quantitative effect of incorporation on chain extension. Arch Biochem Biophys 302:19–30

    Article  PubMed  CAS  Google Scholar 

  • Cole N, Gibson BE (1997) High-dose cytosine arabinoside in the treatment of acute myeloid leukaemia. Blood Rev 11:39–45

    Article  PubMed  CAS  Google Scholar 

  • Eriksson S, Kierdaszuk B, Munch-Petersen B, Oberg B, Johansson NG (1991) Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem Biophys Res Commun 176:586–592

    Article  PubMed  CAS  Google Scholar 

  • Galmarini M, Mackey JR, Dumontet C (2001) Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 15:875–890

    Article  PubMed  CAS  Google Scholar 

  • Gandhi V, Estey E, Keating MJ, Chucrallah A, Plunkett W (1996) Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetics, pharmacodynamic and molecular interactions. Blood 87:256–264

    PubMed  CAS  Google Scholar 

  • Griffig J, Koob R, Blakley RL (1989) Mechanism of inhibition of DNA synthesis by 2-chlorodeoxyadenosine in human lymphoblastic cells. Cancer Res 49:6923–6928

    PubMed  CAS  Google Scholar 

  • Han T, Fernandez M, Sarkar M, Agarwal RP (2003) Arabinosylcytosine down-regulates thymidine kinase and induces cross-resistance to zidovudine in T-lymphoid cells. Biochem Biophys Res Commun 307:564–568

    Article  PubMed  CAS  Google Scholar 

  • Han T, Fernandez M, Chou TC, Agarwal RP (2004) 2-Chloro-2′-deoxyadenosine synergistically enhances azidothymidine cytotoxicity in azidothymidine resistant T-lymphoid cells. Biochem Biophys Res Commun 316:518–522

    Article  PubMed  CAS  Google Scholar 

  • Hirota Y, Yoshioka A, Tanaka S, Watanabe K, Otani T, Minowada J, Matsuda A, Ueda T, Wataya Y (1989) Imbalance of deoxyribonucleoside triphosphates, DNA double-strand breaks, and cell death caused by 2-chlorodeoxyadenosine in mouse FM3A cells. Cancer Res 49:915–919

    PubMed  CAS  Google Scholar 

  • Juliusson G, Elmhorn-Rosenborg A, Liliemark J (1992) Response to 2-chlorodeoxyadenosine in patients with B-cell chronic lymphocytic leukemia resistant to fludarabine. N Engl J Med 327:1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Carrera CJ, Piro LD, Saven A, Kipps TJ, Carson DA (1993) Relationship of deoxycytidsine kinase and cytoplasmic 5’-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine. Blood 81:597–601

    PubMed  CAS  Google Scholar 

  • Keating MJ, McCredie KB, Bodey GP, Smith TL, Gehan E, Freireich EJ (1982) Improved prospects for long-term survival in adults with acute myelogenous leukemia. JAMA 248:2481–2486

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Hall TC, Wodinsky I (1967) Transport and phosphorylation as factors in the antitumor action of cytosine arabinoside. Science 156:1240–1241

    Article  PubMed  CAS  Google Scholar 

  • Kornblau SM, Gandhi V, Andreeff HM, Beran M, Kantarjian HM, Koller CA, O’Brien S, Plunkett W, Estey E (1996) Clinical and laboratory studies of 2-chlorodeoxyadenosine ± cytosine arabinoside for relapsed or refractory acute myelogenous leukemia in adults. Leukemia 10:1563–1569

    PubMed  CAS  Google Scholar 

  • Lassota P, Kazimierczuk Z, Darzynkiewicz Z (1994) Apoptotic death of lymphocytes upon treatment with 2-chloro-2’-deoxyadenosine (2-CdA). Arch Immulo Ther Exp Warsz 42:17–23

    CAS  Google Scholar 

  • Lopez JA, Nassif E, Vennicola P, Krikorian JG, Agarwal RP (1985) Central nervous system pharmacokinetics of high-dose cytosine arabinoside. J Neuro Oncol 3:119–124

    Article  CAS  Google Scholar 

  • Mackey JR, Baldwin SA, Young JD, Cass CE (1998) The role of nucleoside transport in anticancer drug resistance. Drug Resist Updat 1:310–324

    Article  PubMed  CAS  Google Scholar 

  • Momparler RL, Fisher GA (1968) Mammalian deoxynucleoside kinases. J Biol Chem 243:4298–4304

    PubMed  CAS  Google Scholar 

  • Nitisu N, Umeda M, Honma Y (2000) Myeloid and monocytoid leukemia cells have different sensitivity to differentiation-inducing activity of deoxyadenosine analogs. Leuk Res 24:1–9

    Article  PubMed  Google Scholar 

  • Piro LD (1992) 2-Chlorodeoxyadenosine treatment of lymphoid malignancies. Blood 79:843–845

    PubMed  CAS  Google Scholar 

  • Piro LD, Carrera CJ, Carson DA, Beutler E (1990) Lasting remissions in hairy-cell leukemia induced by a single infusion of 2-chlorodeoxyadenosine. N Engl J Med 322:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Robak T (2001) Cladribine in the treatment of chronic lymphocytic leukemia. Leuk Lymphoma 40:551–564

    Article  PubMed  CAS  Google Scholar 

  • Robak T (2003) Purine nucleoside analogs in the treatment of myeloid leukemias. Leuk Lymphoma 44:391–409

    Article  PubMed  CAS  Google Scholar 

  • Robak T, Wrzesień-Kus A, Leh-Marańda E, Kowal M, Dmoszyńska A (2000) Combination regimen of Cladribine (2-chlorodeoxyadenosine), cytarabine and G-CSF (CLAG) as induction therapy for patients with relapsed or refractory acute myeloid leukemia. Leuk lymphoma 39:121–129

    PubMed  CAS  Google Scholar 

  • Robertson LE, Chubb S, Meyn RE, Story M, Ford R, Hittelman WN, Plunkett W (1993) Induction of apoptotic cell death in chronic lymphoid leukemia by 2-chloro-2’-deoxyadenosine and 9-β-D-arabinosyl-2-fluoroadenine. Blood 81:143–150

    PubMed  CAS  Google Scholar 

  • Rustum YM, Preisler HD (1979) Correlation between leukemic cell retention of 1-β-D-arabinofuranosyl cytosine 5’-triphosphate and response to therapy. Cancer Res 39:42–49

    PubMed  CAS  Google Scholar 

  • Santana VM, Mirro Jr J, Harwood, FC, Cherrie J, Schell M, Kalwinsky D, Blakley RL (1991) A phase I clinical trial of 2-chlorodeoxyadenosine in pediatric patients with acute leukemia. J Clin Oncol 9:416–422

    PubMed  CAS  Google Scholar 

  • Sasvári-Székely M, Spasokoukotskaja T, Melinda S, Csapó Z, Turi A, Szántó I, Eriksson S, Staub M (1998) Activation of deoxycytidine kinase during inhibition of DNA synthesis by 2-chloro-2’-deoxyadenosine (cladribine) in human lymphocytes. Biochem Pharmacol 56:1175–1179

    Article  PubMed  Google Scholar 

  • Schirmer M, Stegmann AP, Konwalinka G (1998) Lack of cross-resistance with gemcitabine and cytarabine in cladribine-resistant HL-60 cells with elevated 5′-nucleotidase activity. Exp Hematol 26:1223–1228

    PubMed  CAS  Google Scholar 

  • Shewach DS, Reynolds KK, Hertel L (1992) Nucleotide specificity of human deoxycytidine kinase. Mol Pharmacol 42:518–524

    PubMed  CAS  Google Scholar 

  • Ullman B, Gudas LJ, Martin DW Jr (1979) Deoxyadenosine and deoxyguanosine cytotoxicity in cultured mouse T-lymphoma cells: a model for immunodeficiency disease. In: Pollara B, Pickering RJ, Meuwissen HJ, Porter IH (eds) Inborn Errors of Specific Immunity. Academic, New York, pp 237–259

    Google Scholar 

  • Van Den Neste E, Martiat P, Mineur P, Delannoy A, Doyen C, Zenebergh A, Michaux JL, Ferrant A (1998) 2-Chlorodeoxyadenosine with or without daunorubicin in relapsed or refractory acute myeloid leukemia. Ann Hematol 76:19–23

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Karlsson A, Arner ES, Eriksson S (1993) Substrate specificity of mitochondrial 2′-deoxyguanosine kinase. Efficient phosphorylation of 2-chloro-deoxyadenosine. J Biol Chem 268:22847–22852

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Health and Human Services Grant NIAID AI 29155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram P. Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, T., Fernandez, M., Chou, TC. et al. Quantitation of synergism of arabinosylcytosine and cladribine against the growth of arabinosylcytosine-resistant human lymphoid cells. J Cancer Res Clin Oncol 131, 609–616 (2005). https://doi.org/10.1007/s00432-005-0012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-005-0012-5

Keywords

Navigation