Skip to main content
Log in

Population pharmacokinetics of oxcarbazepine active metabolite in Chinese children with epilepsy

  • RESEARCH
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Oxcarbazepine (OXC) is an antiepileptic drug whose efficacy is largely attributed to its monohydroxy derivative metabolite (MHD). Nevertheless, there exists significant inter-individual variability in both the pharmacokinetics and therapeutic response of this drug. The objective of this study is to explore the impact of patients’ characteristics and genetic variants on MHD clearance in a population pharmacokinetic (PPK) model of Chinese pediatric patients with epilepsy. The PPK model was developed using a nonlinear mixed effects modeling method based on 231 MHD plasma concentrations obtained from 185 children with epilepsy. The one-compartment model and combined residual model were established to describe the pharmacokinetics of MHD. Forward addition and backward elimination were employed to evaluate the impact of covariates on the model parameters. The model was evaluated using goodness-of-fit, bootstrap, visual predictive checks, and normalized prediction distribution errors. In the two final PPK models, age, estimated glomerular filtration rate (eGFR), and a combined genotype of six variants (rs1045642, rs2032582, rs7668282, rs2396185, rs2304016, rs1128503) were found to significantly reduce inter-individual variability for MHD clearance. The inter-individual clearance equals to 1.38 × (Age/4.74)0.29 × (eGFR/128.66)0.25 × eθABCB-UGT-SCN-INSR for genetic variants included model and 1.30 × (Age/4.74)0.30 × (eGFR/128.66)0.23 for model without genetic variants. The precision of all parameters was deemed acceptable, and the model exhibited good predictability while remaining stable and effective.

   Conclusion: Age, eGFR, and genotype may play a significant role in MHD clearance in children with epilepsy. The developed PPK models hold potential utility in facilitating oxcarbazepine dose adjustment in pediatric patients.

What is Known:

• The adjustment of the oxcarbazepine regimen remains difficult due to the considerable inter- and intra-individual variability of oxcarbazepine pharmacokinetics.

• Body weight and co-administration with enzyme-inducing antiepileptic drugs emerge as the most influential factors contributing to the pharmacokinetics of MHD.

What is New:

• A positive correlation was observed between eGFR and the clearance of MHD in pediatric patients with epilepsy.

• We explored the influence of genetic polymorphisms on MHD clearance and identified a combined genotype (ABCB-UGT-SCN-INSR) that exhibited a significant association with MHD concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kanner AM, Bicchi MM (2022) Antiseizure Medications for Adults With Epilepsy: A Review. JAMA 327(13):1269–1281

    Article  CAS  PubMed  Google Scholar 

  2. Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Guerreiro C, Kälviäinen R et al (2013) Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 54(3):551–563

    Article  CAS  PubMed  Google Scholar 

  3. Glauser TA (2001) Oxcarbazepine in the treatment of epilepsy. Pharmacotherapy 21(8):904–919

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Zhang HN, Niu CH, Gao P, Chen YJ, Peng J et al (2014) Population pharmacokinetics modeling of oxcarbazepine to characterize drug interactions in Chinese children with epilepsy. Acta Pharmacol Sin 35(10):1342–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI et al (2008) Antiepileptic drugs–best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring. ILAE Commission on Therapeutic Strategies Epilepsia 49(7):1239–1276

    CAS  PubMed  Google Scholar 

  6. Chen YT, Wang CY, Yin YW, Li ZR, Lin WW, Zhu M et al (2021) Population pharmacokinetics of oxcarbazepine: a systematic review. Expert Rev Clin Pharmacol 14(7):853–864

    Article  CAS  PubMed  Google Scholar 

  7. May TW, Korn-Merker E, Rambeck B (2003) Clinical pharmacokinetics of oxcarbazepine. Clin Pharmacokinet 42(12):1023–1042

    Article  CAS  PubMed  Google Scholar 

  8. Chen CY, Zhou Y, Cui YM, Yang T, Zhao X, Wu Y (2019) Population pharmacokinetics and dose simulation of oxcarbazepine in Chinese paediatric patients with epilepsy. J Clin Pharm Ther 44(2):300–311

    Article  PubMed  Google Scholar 

  9. Park KJ, Kim JR, Joo EY, Seo DW, Hong SB, Ko JW et al (2012) Drug interaction and pharmacokinetic modeling of oxcarbazepine in korean patients with epilepsy. Clin Neuropharmacol 35(1):40–44

    Article  CAS  PubMed  Google Scholar 

  10. Sugiyama I, Bouillon T, Yamaguchi M, Suzuki H, Hirota T, Fink M (2015) Population pharmacokinetic analysis for 10-monohydroxy derivative of oxcarbazepine in pediatric epileptic patients shows no difference between Japanese and other ethnicities. Drug Metab Pharmacokinet 30(2):160–167

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigues C, Chiron C, Rey E, Dulac O, Comets E, Pons G et al (2017) Population pharmacokinetics of oxcarbazepine and its monohydroxy derivative in epileptic children. Br J Clin Pharmacol 83(12):2695–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Northam RS, Hernandez AW, Litzinger MJ, Minecan DN, Glauser TA, Mangat S et al (2005) Oxcarbazepine in infants and young children with partial seizures. Pediatr Neurol 33(5):337–344

    Article  PubMed  Google Scholar 

  13. Antunes NJ, van Dijkman SC, Lanchote VL, Wichert-Ana L, Coelho EB, Alexandre Junior V et al (2017) Population pharmacokinetics of oxcarbazepine and its metabolite 10-hydroxycarbazepine in healthy subjects. Eur J Pharm Sci 109s:S116–s123

  14. Lin WW, Li XW, Jiao Z, Zhang J, Rao X, Zeng DY et al (2019) Population pharmacokinetics of oxcarbazepine active metabolite in Chinese paediatric epilepsy patients and its application in individualised dosage regimens. Eur J Clin Pharmacol 75(3):381–392

    Article  CAS  PubMed  Google Scholar 

  15. Lin WW, Wang CL, Jiao Z, Yu XL, Zhang J, Zhang WB et al (2019) Glomerular Filtration Rate Is a Major Predictor of Clearance of Oxcarbazepine Active Metabolite in Adult Chinese Epileptic Patients: A Population Pharmacokinetic Analysis. Ther Drug Monit 41(5):665–673

    Article  CAS  PubMed  Google Scholar 

  16. Peng J, Zhang HN, Liu ZS, Xu H, Wang Y (2014) Population pharmacokinetics of oxcarbazepine active metabolite in Chinese children with epilepsy. Int J Clin Pharmacol Ther 52(8):684–692

    Article  CAS  PubMed  Google Scholar 

  17. Yu Y, Zhang Q, Xu W, Lv C, Hao G (2016) Population pharmacokinetic modeling of oxcarbazepine active metabolite in Chinese patients with epilepsy. Eur J Drug Metab Pharmacokinet 41(4):345–351

    Article  CAS  PubMed  Google Scholar 

  18. Wegner I, Wilhelm AJ, Sander JW, Lindhout D (2013) The impact of age on lamotrigine and oxcarbazepine kinetics: a historical cohort study. Epilepsy Behav 29(1):217–221

    Article  PubMed  Google Scholar 

  19. Armijo JA, Vega-Gil N, Shushtarian M, Adín J, Herranz JL (2005) 10-Hydroxycarbazepine serum concentration-to-oxcarbazepine dose ratio: influence of age and concomitant antiepileptic drugs. Ther Drug Monit 27(2):199–204

    Article  CAS  PubMed  Google Scholar 

  20. McKnight D, Morales A, Hatchell KE, Bristow SL, Bonkowsky JL, Perry MS et al (2022) Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice. JAMA Neurol 79(12):1267–1276

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ma CL, Wu XY, Jiao Z, Hong Z, Wu ZY, Zhong MK (2015) SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics 16(4):347–360

    Article  CAS  PubMed  Google Scholar 

  22. Shen C, Zhang B, Liu Z, Tang Y, Zhang Y, Wang S et al (2017) Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy. Seizure 51:102–106

    Article  PubMed  Google Scholar 

  23. Yang X, Yan Y, Fang S, Zeng S, Ma H, Qian L et al (2019) Comparison of oxcarbazepine efficacy and MHD concentrations relative to age and BMI: Associations among ABCB1, ABCC2, UGT2B7, and SCN2A polymorphisms. Medicine (Baltimore) 98(12):e14908

    Article  CAS  PubMed  Google Scholar 

  24. Lu Y, Fang Y, Wu X, Ma C, Wang Y, Xu L (2017) Effects of UGT1A9 genetic polymorphisms on monohydroxylated derivative of oxcarbazepine concentrations and oxcarbazepine monotherapeutic efficacy in Chinese patients with epilepsy. Eur J Clin Pharmacol 73(3):307–315

    Article  CAS  PubMed  Google Scholar 

  25. Yang Q, Hu Y, Zhang X, Zhang X, Dai H, Li X (2023) Population pharmacokinetics of oxcarbazepine 10-monohydroxy derivative in Chinese adult epileptic patients. Eur J Hosp Pharm 30(e1):e90–e96

    Article  PubMed  Google Scholar 

  26. Dupouey J, Doudka N, Belo S, Blin O, Guilhaumou R (2016) Simultaneous determination of four antiepileptic drugs in human plasma samples using an ultra-high-performance liquid chromatography tandem mass spectrometry method and its application in therapeutic drug monitoring. Biomed Chromatogr 30(12):2053–2060

    Article  CAS  PubMed  Google Scholar 

  27. Manna I, Gambardella A, Bianchi A, Striano P, Tozzi R, Aguglia U et al (2011) A functional polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness in Italian patients with focal epilepsy. Epilepsia 52(5):e40-44

    Article  PubMed  Google Scholar 

  28. Ufer M, von Stülpnagel C, Muhle H, Haenisch S, Remmler C, Majed A et al (2011) Impact of ABCC2 genotype on antiepileptic drug response in Caucasian patients with childhood epilepsy. Pharmacogenet Genomics 21(10):624–630

    Article  CAS  PubMed  Google Scholar 

  29. Wang P, Yin T, Ma HY, Liu DQ, Sheng YA, Zhou BT (2015) First Analysis of the Association Between CYP3A4/5, ABCB1 Genetic Polymorphisms and Oxcarbazepine Metabolism and Transport in Chinese Epileptic Patients with Oxcarbazepine Monotherapy and Bitherapy. J Pharm Pharm Sci 18(3):256–265

    Article  PubMed  Google Scholar 

  30. Zhao W, Meng H (2022) Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population. Bioengineered 13(3):7709–7745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mei S, Feng W, Zhu L, Li X, Yu Y, Yang W et al (2018) Effect of CYP2C19, UGT1A8, and UGT2B7 on valproic acid clearance in children with epilepsy: a population pharmacokinetic model. Eur J Clin Pharmacol 74(8):1029–1036

    Article  CAS  PubMed  Google Scholar 

  32. Jang Y, Yoon S, Kim TJ, Lee S, Yu KS, Jang IJ et al (2021) Population pharmacokinetic model development and its relationship with adverse events of oxcarbazepine in adult patients with epilepsy. Sci Rep 11(1):6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637

    Article  PubMed  PubMed Central  Google Scholar 

  34. Comets E, Brendel K, Mentré F (2008) Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed 90(2):154–166

    Article  PubMed  Google Scholar 

  35. Savic RM, Karlsson MO (2009) Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. Aaps j 11(3):558–569

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhao T, Yu J, Wang TT, Feng J, Zhao WB, Sun L et al (2020) Impact of ABCB1 Polymorphism on Levetiracetam Serum Concentrations in Epileptic Uygur Children in China. Ther Drug Monit 42(6):886–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rouan MC, Lecaillon JB, Godbillon J, Menard F, Darragon T, Meyer P et al (1994) The effect of renal impairment on the pharmacokinetics of oxcarbazepine and its metabolites. Eur J Clin Pharmacol 47(2):161–167

    Article  CAS  PubMed  Google Scholar 

  38. Nair PC, Chau N, McKinnon RA, Miners JO (2020) Arginine-259 of UGT2B7 Confers UDP-Sugar Selectivity. Mol Pharmacol 98(6):710–718

    Article  CAS  PubMed  Google Scholar 

  39. Wang P, Lin XQ, Cai WK, Xu GL, Zhou MD, Yang M et al (2018) Effect of UGT2B7 genotypes on plasma concentration of valproic acid: a meta-analysis. Eur J Clin Pharmacol 74(4):433–442

    Article  CAS  PubMed  Google Scholar 

  40. Feng W, Mei S, Zhu L, Yu Y, Yang W, Gao B et al (2018) Effects of UGT2B7, SCN1A and CYP3A4 on the therapeutic response of sodium valproate treatment in children with generalized seizures. Seizure 58:96–100

    Article  PubMed  Google Scholar 

  41. Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R (2020) Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 213:107554

    Article  CAS  PubMed  Google Scholar 

  42. Meng H, Guo G, Ren J, Zhou H, Ge Y, Guo Y (2011) Effects of ABCB1 polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Behav 21(1):27–30

    Article  PubMed  Google Scholar 

  43. Subenthiran S, Abdullah NR, Joseph JP, Muniandy PK, Mok BT, Kee CC et al (2013) Linkage disequilibrium between polymorphisms of ABCB1 and ABCC2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur Hospital. PLoS ONE 8(5):e64827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lovrić M, Božina N, Hajnšek S, Kuzman MR, Sporiš D, Lalić Z et al (2012) Association between lamotrigine concentrations and ABCB1 polymorphisms in patients with epilepsy. Ther Drug Monit 34(5):518–525

    Article  PubMed  Google Scholar 

  45. Keangpraphun T, Towanabut S, Chinvarun Y, Kijsanayotin P (2015) Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy. J Clin Pharm Ther 40(3):315–319

    Article  CAS  PubMed  Google Scholar 

  46. Fan YX, Zhang Z, Meng JR, Yin SJ, Wang P, Zhou T et al (2021) Association of ABCB1 polymorphisms with carbamazepine metabolism and resistance in epilepsy: A meta-analysis. Epilepsy Res 177:106785

    Article  CAS  PubMed  Google Scholar 

  47. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV et al (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811):525–528

    Article  CAS  PubMed  Google Scholar 

  48. Chouchi M, Klaa H, Ben-Youssef Turki I, Hila L (2019) ABCB1 Polymorphisms and Drug-Resistant Epilepsy in a Tunisian Population. Dis Markers 2019:1343650

    Article  PubMed  PubMed Central  Google Scholar 

  49. Seo T, Ishitsu T, Ueda N, Nakada N, Yurube K, Ueda K et al (2006) ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 7(4):551–561

    Article  CAS  PubMed  Google Scholar 

  50. Seven M, Batar B, Unal S, Yesil G, Yuksel A, Guven M (2014) The drug-transporter gene MDR1 C3435T and G2677T/A polymorphisms and the risk of multidrug-resistant epilepsy in Turkish children. Mol Biol Rep 41(1):331–336

    Article  CAS  PubMed  Google Scholar 

  51. Kim DW, Kim M, Lee SK, Kang R, Lee SY (2006) Lack of association between C3435T nucleotide MDR1 genetic polymorphism and multidrug-resistant epilepsy. Seizure 15(5):344–347

    Article  PubMed  Google Scholar 

  52. Sills GJ, Mohanraj R, Butler E, McCrindle S, Collier L, Wilson EA et al (2005) Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment. Epilepsia 46(5):643–647

    Article  CAS  PubMed  Google Scholar 

  53. Li H, Wang B, Chang C, Wu M, Xu Y, Jiang Y (2015) The roles of variants in human multidrug resistance (MDR1) gene and their haplotypes on antiepileptic drugs response: a meta-analysis of 57 studies. PLoS ONE 10(3):e0122043

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li M, Zhong R, Lu Y, Zhao Q, Li G, Lin W (2020) Association Between SCN1A rs2298771, SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 Polymorphisms and Responsiveness to Antiepileptic Drugs: A Meta-Analysis. Front Neurol 11:591828

    Article  PubMed  Google Scholar 

  55. Baulin EF, Kulakovskiy IV, Roytberg MA, Astakhova TV (2020) Brain-related genes are specifically enriched with long phase 1 introns. PLoS ONE 15(5):e0233978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi L, Zhu M, Li H, Wen Z, Chen X, Luo J et al (2019) SCN1A and SCN2A polymorphisms are associated with response to valproic acid in Chinese epilepsy patients. Eur J Clin Pharmacol 75(5):655–663

    Article  CAS  PubMed  Google Scholar 

  57. Liu M, Mao J, Xu H, Wang J, Zhao P, Xu Q et al (2020) Effects of SCN1A and SCN2A polymorphisms on responsiveness to valproic acid monotherapy in epileptic children. Epilepsy Res 168:106485

    Article  CAS  PubMed  Google Scholar 

  58. Kwan P, Poon WS, Ng HK, Kang DE, Wong V, Ng PW et al (2008) Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression. Pharmacogenet Genomics 18(11):989–998

    Article  CAS  PubMed  Google Scholar 

  59. Yang R, Qian R, Chen K, Yi W, Sima X (2021) Genetic polymorphisms in SCN2A are not associated with epilepsy risk and AEDs response: evidence from a meta-analysis. Neurol Sci 42(7):2705–2711

    Article  PubMed  Google Scholar 

  60. Haerian BS, Baum L, Kwan P, Tan HJ, Raymond AA, Mohamed Z (2013) SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis. Pharmacogenomics 14(10):1153–1166

    Article  CAS  PubMed  Google Scholar 

  61. Che F, Fu Q, Li X, Gao N, Qi F, Sun Z et al (2015) Association of insulin receptor H1085H C>T, insulin receptor substrate 1 G972R and insulin receptor substrate 2 1057G/A polymorphisms with refractory temporal lobe epilepsy in Han Chinese. Seizure 25:178–180

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are given to all patients and authors in our study.

Funding

This work was supported by the National Key Research and Development Program of China (2020YFC2008306).

Author information

Authors and Affiliations

Authors

Contributions

S Mei, W Feng and Y Wu conceived and designed the study. X Li, W Feng, S Wei, H Wu and Q Zhang collected samples from patients and analyzed the data. S Wei and X Li performed the development of model and drafted the manuscript. S Mei, Y Wu, W Feng, and Z Zhao revised the manuscript. S Mei and Y Wu supervised the quality of the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shenghui Mei, Weixing Feng or Yun Wu.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards, and approved by the Ethics Committee of Beijing Children’s Hospital (ID: 2019-k-150).

Conflict of interest

All of the authors declare that they have no conflicts of interest.

Additional information

Communicated by Peter de Winter

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wei, S., Wu, H. et al. Population pharmacokinetics of oxcarbazepine active metabolite in Chinese children with epilepsy. Eur J Pediatr 182, 4509–4521 (2023). https://doi.org/10.1007/s00431-023-05092-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-023-05092-z

Keywords

Navigation