Skip to main content
Log in

Reference values of diaphragmatic dimensions in healthy children aged 0–8 years

  • RESEARCH
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Diaphragmatic thickness (Tdi) and diaphragm thickening fraction (dTF) are widely used parameters in ultrasound studies of the diaphragm in mechanically ventilated children, but normal values for healthy children are scarce. We determined reference values of Tdi and dTF using ultrasound in healthy children aged 0–8 years old and assessed their reproducibility. In a prospective, observational cohort, Tdi and dTF were measured on ultrasound images across four age groups comprising at least 30 children per group: group 1 (0–6 months), group 2 (7 months-1 year), group 3 (2–4 years) and group 4 (5–8 years). Ultrasound images of 137 healthy children were included. Mean Tdi at inspiration was 2.07 (SD 0.40), 2.09 (SD 0.40), 1.69 (SD 0.30) and 1.72 (SD 0.30) mm for groups 1, 2, 3 and 4, respectively. Mean Tdi at expiration was 1.64 (SD 0.30), 1.67 (SD 0.30), 1.38 (SD 0.20) and 1.42 (SD 0.20) mm for groups 1, 2, 3 and 4, respectively. Mean Tdi at inspiration and mean Tdi at expiration for groups 1 and 2 were significantly greater than those for groups 3 and 4 (both p < 0.001). Mean dTF was 25.4% (SD 10.4), 25.2% (SD 8.3), 22.8% (SD 10.9) and 21.3% (SD 7.1) for group 1, 2, 3 and 4, respectively. The intraclass correlation coefficients (ICC) representing the level of inter-rater reliability between two examiners performing the ultrasounds was 0.996 (95% CI 0.982–0.999). ICC of the inter-rater reliability between the raters in 11 paired assessments was 0.989 (95% CI 0.973–0.995).

   Conclusion: Ultrasound measurements of Tdi and dTF were highly reproducible in healthy children aged 0–8 years.

   Trial registration: ClinicalTrials.gov identifier (NCT number): NCT04589910.

What is Known:

• Diaphragmatic thickness and diaphragm thickening fraction are widely used parameters in ultrasound studies of the diaphragm in mechanically ventilated children, but normal values for healthy children to compare these with are scarce.

What is New:

• We determined normal values of diaphragmatic thickness and diaphragm thickening fraction using ultrasound in 137 healthy children aged 0–8 years old. The diaphragmatic thickness of infants up to 1 year old was significantly greater than that of children from 2 to 8 years old. Diaphragmatic thickness decreased with an increase in body surface area. These normal values in healthy children can be used to assess changes in respiratory muscle thickness in mechanically ventilated children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All relevant data is contained within the article: The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

References

  1. Dube BP, Dres M (2016) Diaphragm dysfunction: diagnostic approaches and management strategies. J Clin Med 5(12)

  2. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327–1335

    Article  CAS  PubMed  Google Scholar 

  3. Dres M, Goligher EC, Heunks LMA, Brochard LJ (2017) Critical illness-associated diaphragm weakness. Intensive Care Med 43(10):1441–1452

    Article  PubMed  Google Scholar 

  4. Dres M, Dube BP, Mayaux J, Delemazure J, Reuter D, Brochard L et al (2017) Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med 195(1):57–66

    Article  PubMed  Google Scholar 

  5. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C et al (2013) Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact-a prospective study. Am J Respir Crit Care Med 188(2):213–9

  6. Laghi F, Cattapan SE, Jubran A, Parthasarathy S, Warshawsky P, Choi YS et al (2003) Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med 167(2):120–127

    Article  PubMed  Google Scholar 

  7. Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A et al (2016) Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med 42(5):853–861

    Article  PubMed  Google Scholar 

  8. Gayan-Ramirez G, Decramer M (2002) Effects of mechanical ventilation on diaphragm function and biology. Eur Respir J 20(6):1579–1586

    Article  CAS  PubMed  Google Scholar 

  9. Schepens T, Verbrugghe W, Dams K, Corthouts B, Parizel PM, Jorens PG (2015) The course of diaphragm atrophy in ventilated patients assessed with ultrasound: a longitudinal cohort study. Crit Care 19:422

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mariani LF, Bedel J, Gros A, Lerolle N, Milojevic K, Laurent V et al (2016) Ultrasonography for screening and follow-up of diaphragmatic dysfunction in the ICU: a pilot study. J Intensive Care Med 31(5):338–343

    Article  PubMed  Google Scholar 

  11. DiNino E, Gartman EJ, Sethi JM, McCool FD (2014) Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax 69(5):423–427

    Article  PubMed  Google Scholar 

  12. Umbrello M, Formenti P, Longhi D, Galimberti A, Piva I, Pezzi A et al (2015) Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care 19:161

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D et al (2015) Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med 41(4):734

    Article  PubMed  Google Scholar 

  14. Blumhof S, Wheeler D, Thomas K, McCool FD, Mora J (2016) Change in diaphragmatic thickness during the respiratory cycle predicts extubation success at various levels of pressure support ventilation. Lung 194(4):519–525

    Article  PubMed  Google Scholar 

  15. Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS et al (2018) Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med 197(2):204–213

    Article  CAS  PubMed  Google Scholar 

  16. Weber MD, Lim JKB, Glau C, Conlon T, James R, Lee JH (2021) A narrative review of diaphragmatic ultrasound in pediatric critical care. Pediatr Pulmonol 56(8):2471–2483

    Article  PubMed  Google Scholar 

  17. Montoro DV (2021) Ultrasound assessment of ventilator-induced diaphragmatic dysfunction in mechanically ventilated pediatric patients. Paediatr Respir Rev 40:58–64

    Article  Google Scholar 

  18. Glau CL, Conlon TW, Himebauch AS, Yehya N, Weiss SL, Berg RA et al (2018) Progressive diaphragm atrophy in pediatric acute respiratory Failure. Pediatr Crit Care Med 19(5):406–411

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee EP, Hsia SH, Hsiao HF, Chen MC, Lin JJ, Chan OW et al (2017) Evaluation of diaphragmatic function in mechanically ventilated children: an ultrasound study. PLoS ONE 12(8):e0183560

    Article  PubMed  PubMed Central  Google Scholar 

  20. IJland MM, Lemson J, van der Hoeven JG, Heunks LMA (2020) The impact of critical illness on the expiratory muscles and the diaphragm assessed by ultrasound in mechanical ventilated children. Ann Intensive Care 10(1):115

  21. van Doorn JLM, Wijntjes J, Saris CGJ, Ottenheijm CAC, van Alfen N, Doorduin J (2022) Association of diaphragm thickness and echogenicity with age, sex, and body mass index in healthy subjects. Muscle Nerve 66(2):197–202

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rehan VK, McCool FD (2003) Diaphragm dimensions of the healthy term infant. Acta Paediatr 92(9):1062–1067

    Article  CAS  PubMed  Google Scholar 

  23. Alonso-Ojembarrena A, Ruiz-Gonzalez E, Estepa-Pedregosa L, Armenteros-Lopez AI, Segado-Arenas A, Lubian-Lopez SP (2020) Reproducibility and reference values of diaphragmatic shortening fraction for term and premature infants. Pediatr Pulmonol 55(8):1963–1968

    Article  PubMed  Google Scholar 

  24. Serratrice G (2009) Building muscle. Jt Bone Spine 76(4):324–326

    Article  PubMed  Google Scholar 

  25. Polla B, D’Antona G, Bottinelli R, Reggiani C (2004) Respiratory muscle fibres: specialisation and plasticity. Thorax 59(9):808–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orsso CE, Tibaes JRB, Oliveira CLP, Rubin DA, Field CJ, Heymsfield SB et al (2019) Low muscle mass and strength in pediatrics patients: why should we care? Clin Nutr 38(5):2002–2015

    Article  PubMed  Google Scholar 

  27. Johnson RW, Ng KWP, Dietz AR, Hartman ME, Baty JD, Hasan N et al (2018) Muscle atrophy in mechanically-ventilated critically ill children. PLoS ONE 13(12):e0207720

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xue Y, Zhang Z, Sheng CQ, Li YM, Jia FY (2019) The predictive value of diaphragm ultrasound for weaning outcomes in critically ill children. BMC Pulm Med 19(1):270

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C et al (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183(3):364–371

    Article  CAS  PubMed  Google Scholar 

  30. Dres M, Demoule A (2019) Beyond ventilator-induced diaphragm dysfunction: new evidence for critical illness-associated diaphragm weakness. Anesthesiology 131(3):462–463

    Article  PubMed  Google Scholar 

  31. Boon AJ, Harper CJ, Ghahfarokhi LS, Strommen JA, Watson JC, Sorenson EJ (2013) Two-dimensional ultrasound imaging of the diaphragm: quantitative values in normal subjects. Muscle Nerve 47(6):884–889

    Article  PubMed  Google Scholar 

  32. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D et al (2015) Evolution of diaphragm thickness during mechanical ventilation. Impact of Inspiratory Effort. Am J Respir Crit Care Med 192(9):1080–8

  33. Zambon M, Beccaria P, Matsuno J, Gemma M, Frati E, Colombo S et al (2016) Mechanical ventilation and diaphragmatic atrophy in critically Ill patients: an ultrasound study. Crit Care Med 44(7):1347–1352

    Article  PubMed  Google Scholar 

  34. Vivier E, Muller M, Putegnat JB, Steyer J, Barrau S, Boissier F et al (2019) Inability of diaphragm ultrasound to predict extubation failure: a multicenter study. Chest 155(6):1131–1139

    Article  PubMed  Google Scholar 

  35. Vishwanath TT, Geetha MJ, Keval PJ (2016) Evaluation of thickness of normal diaphragm by B mode ultrasound. Int J Contemp Med Res 3(9):2658–2660

    Google Scholar 

  36. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shi ZH, de Vries H, de Grooth HJ, Jonkman AH, Zhang Y, Haaksma M et al (2021) Changes in respiratory muscle thickness during mechanical ventilation: focus on expiratory muscles. Anesthesiology 134(5):748–759

    Article  PubMed  Google Scholar 

  38. Tuinman PR, Jonkman AH, Dres M, Shi ZH, Goligher EC, Goffi A et al (2020) Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients-a narrative review. Intensive Care Med 46(4):594–605

  39. Yeung T, Mohsen N, Ghanem M, Ibrahim J, Shah J, Kajal D et al (2022) Diaphragmatic thickness and excursion in preterm infants with bronchopulmonary dysplasia compared with term or near term infants: a prospective observational study. Chest

  40. El-Halaby H, Abdel-Hady H, Alsawah G, Abdelrahman A, El-Tahan H (2016) Sonographic evaluation of diaphragmatic excursion and thickness in healthy infants and children. J Ultrasound Med 35(1):167–175

    Article  PubMed  Google Scholar 

  41. Dres M, Dube BP, Goligher E, Vorona S, Demiri S, Morawiec E et al (2020) Usefulness of parasternal intercostal muscle ultrasound during weaning from mechanical ventilation. Anesthesiology 132(5):1114–1125

    Article  CAS  PubMed  Google Scholar 

  42. Boussuges A, Rives S, Finance J, Chaumet G, Vallee N, Risso JJ et al (2021) Ultrasound assessment of diaphragm thickness and thickening: reference values and limits of normality when in a seated position. Front Med (Lausanne) 8:742703

    Article  PubMed  Google Scholar 

  43. Carrillo-Esper R, Perez-Calatayud AA, Arch-Tirado E, Diaz-Carrillo MA, Garrido-Aguirre E, Tapia-Velazco R et al (2016) Standardization of sonographic diaphragm thickness evaluations in healthy volunteers. Respir Care 61(7):920–924

    Article  PubMed  Google Scholar 

  44. Abdel Rahman DA, Saber S, El-Maghraby A (2020) Diaphragm and lung ultrasound indices in prediction of outcome of weaning from mechanical ventilation in pediatric intensive care unit. Indian J Pediatr 87(6):413–420

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schepens T, Dres M, Heunks L, Goligher EC (2019) Diaphragm-protective mechanical ventilation. Curr Opin Crit Care 25(1):77–85

    Article  PubMed  Google Scholar 

  46. Fricke O, Schoenau E (2005) Examining the developing skeletal muscle: why, what and how? J Musculoskelet Neuronal Interact 5(3):225–231

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ko Hagoort for text reviewing.

Author information

Authors and Affiliations

Authors

Contributions

Anita Duyndam: Conceptualisation, methodology, investigation, writing—original draft, project administration, formal analysis, data curation, visualization, software, validation. Joke Smit: Methodology, investigation and review and editing. Leo Heunks: Review and editing. Jeroen Molinger: Conceptualisation, methodology, review and editing. Marloes IJland: Review and editing. Joost van Rosmalen: Methodology, formal analysis, review and editing. Dick Tibboel: Conceptualization, resources, review and editing. Monique van Dijk: Conceptualization, review and editing. Erwin Ista: Conceptualisation, methodology, validation, review and editing, supervision.

Corresponding author

Correspondence to Anita Duyndam.

Ethics declarations

Ethical approval

The Medical Ethics Review board at Erasmus MC Rotterdam approved the study (METC No. NL70476.078.19). The study was performed in accordance with the ethical standards of the Declaration of Helsinki.

Consent to Participate

Written informed consent was obtained from the parents.

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Peter de Winter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duyndam, A., Smit, J., Heunks, L. et al. Reference values of diaphragmatic dimensions in healthy children aged 0–8 years. Eur J Pediatr 182, 2577–2589 (2023). https://doi.org/10.1007/s00431-023-04920-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-023-04920-6

Keywords

Navigation