Skip to main content

Advertisement

Log in

The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Idiopathic nephrotic syndrome (INS) is a common glomerular disease in childhood, and the immunological involvement in the pathogenesis of non-genetic INS, although not fully elucidated, is evident. This narrative review aims to offer a concise and in-depth view of the current knowledge on the immunological mechanisms of the development of INS as well as the role of the immunological components of the disease in the responsiveness to treatment. T cell immunity appears to play a major role in the INS immunopathogenesis and has been the first to be linked to the disease. Various T cell immunophenotypes are implicated in INS, including T-helper-1, T-helper-2, T-helper-17, and T regulatory cells, and various cytokines have been proposed as surrogate biomarkers of the disease; however, no distinct T helper or cytokine profile has been conclusively linked to the disease. More recently, the recognition of the role of B cell mediated immunity and the various B cell subsets that are dysregulated in patients with INS have led to new hypotheses on the underlying immunological causes of INS. Finally, the disambiguation of the exact mechanisms of the INS development in the future may be the key to the development of more targeted personalized approaches in managing INS.

Conclusions: INS demonstrates particularly interesting immunopathogenetic pathways, in which multiple interactions between T cell and B cell immunity and the podocyte are involved. The disambiguation of these pathways will provide promising novel therapeutic targets in INS.

What is Known:

• INS is the most common glomerular disease in the paediatric population, and its onset and relapses have been linked to various immunological triggers.

• Multiple immunological mechanisms have been implicated in the pathogenesis of INS; however, no single distinct immunological profile has been recognized.

What is New:

• Th17 cells and Treg cells play an important role in the immune dysregulation in INS.

• Transitional B cell levels as well as the transitional/memory B cell ratio have been correlated to nephrotic relapses and have been proposed as biomarkers of INS relapses in SSNS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

CNIs:

Calcineurin inhibitors

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

EBNA1:

Epstein-Barr nuclear antigen 1

FSGS:

Focal segmental glomerulosclerosis

HLA:

Human leukocyte antigen

INS:

Idiopathic nephrotic syndrome

IL:

Interleukin

IL-2R:

IL-2 receptor

IL-4Rα:

IL-4 receptor alpha chain

MHC:

Major histocompatibility complex

MCD:

Minimal change disease

SRNS:

Steroid-resistant nephrotic syndrome

SSNS:

Steroid-sensitive nephrotic syndrome

STAT6:

Signal transducer and activator of transcription 6

Th1:

T-helper 1

Th17:

T-helper 17

Th2:

T-helper 2

Treg:

T-regulatory

TLR:

Toll-like receptor

TNF-α:

Tumour necrosis factor-alpha

UCHL1:

Ubiquitin carboxyl-terminal hydrolase L1

ZO-1:

Zonula occludens-1

References

  1. Noone DG, Iijima K, Parekh R (2018) Idiopathic nephrotic syndrome in children. Lancet 392:61–74. https://doi.org/10.1016/S0140-6736(18)30536-1

    Article  PubMed  Google Scholar 

  2. Müller-Deile J, Schiffer M (2016) Podocyte directed therapy of nephrotic syndrome—can we bring the inside out? Pediatr Nephrol 31:393–405. https://doi.org/10.1007/s00467-015-3116-4

    Article  PubMed  Google Scholar 

  3. Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet (London, England) 362:629–639. https://doi.org/10.1016/S0140-6736(03)14184-0

    Article  Google Scholar 

  4. Dossier C, Lapidus N, Bayer F et al (2016) Epidemiology of idiopathic nephrotic syndrome in children: endemic or epidemic? Pediatr Nephrol 31:2299–2308. https://doi.org/10.1007/s00467-016-3509-z

    Article  PubMed  Google Scholar 

  5. Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet (London, England) 2:556–560. https://doi.org/10.1016/s0140-6736(74)91880-7

    Article  CAS  Google Scholar 

  6. Gupta A, Quigg RJ (2015) Glomerular diseases associated with hepatitis B and C. Adv Chronic Kidney Dis 22:343–351. https://doi.org/10.1053/j.ackd.2015.06.003

    Article  PubMed  Google Scholar 

  7. Dossier C, Sellier-Leclerc A-L, Rousseau A et al (2014) Prevalence of herpesviruses at onset of idiopathic nephrotic syndrome. Pediatr Nephrol 29:2325–2331. https://doi.org/10.1007/s00467-014-2860-1

    Article  PubMed  Google Scholar 

  8. Wei C-C, Tsai J-D, Lin C-L et al (2014) Increased risk of idiopathic nephrotic syndrome in children with atopic dermatitis. Pediatr Nephrol 29:2157–2163. https://doi.org/10.1007/s00467-014-2835-2

    Article  PubMed  Google Scholar 

  9. Wei C-C, Lin C-L, Shen T-C, Sung F-C (2015) Occurrence of common allergic diseases in children with idiopathic nephrotic syndrome. J Epidemiol 25:370. https://doi.org/10.2188/JEA.JE20140167

    Article  PubMed  PubMed Central  Google Scholar 

  10. Debiec H, Dossier C, Letouzé E et al (2018) Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 29:2000–2013. https://doi.org/10.1681/ASN.2017111185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baris HE, Baris S, Karakoc-Aydiner E et al (2016) The effect of systemic corticosteroids on the innate and adaptive immune system in children with steroid responsive nephrotic syndrome. Eur J Pediatr 175:685–693. https://doi.org/10.1007/s00431-016-2694-x

    Article  CAS  PubMed  Google Scholar 

  12. Bhatia D, Sinha A, Hari P et al (2018) Rituximab modulates T- and B-lymphocyte subsets and urinary CD80 excretion in patients with steroid-dependent nephrotic syndrome. Pediatr Res 84:520–526. https://doi.org/10.1038/s41390-018-0088-7

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Qin Y, Cai J et al (2011) Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin Immunol 139:314–320. https://doi.org/10.1016/j.clim.2011.02.018

    Article  CAS  PubMed  Google Scholar 

  14. Chung CF, Kitzler T, Kachurina N et al (2019) Intrinsic tumor necrosis factor-α pathway is activated in a subset of patients with focal segmental glomerulosclerosis. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0216426

  15. Otalora L, Chavez E, Watford D et al (2019) Identification of glomerular and podocyte-specific genes and pathways activated by sera of patients with focal segmental glomerulosclerosis. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0222948

  16. Youssef DM, El-Shal AS, Hussein S et al (2018) Tumor necrosis factor alpha gene polymorphisms and haplotypes in Egyptian children with nephrotic syndrome. Cytokine 102:76–82. https://doi.org/10.1016/j.cyto.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  17. Weissbach A, Garty BZ, Lagovsky I et al (2017) Serum tumor necrosis factor-alpha levels in children with nephrotic syndrome: a pilot study. Isr Med Assoc J 19:30–33

    PubMed  Google Scholar 

  18. Zea AH, Stewart T, Ascani J et al (2016) Activation of the IL-2 receptor in podocytes: a potential mechanism for podocyte injury in idiopathic nephrotic syndrome? PLoS ONE 11:e0157907. https://doi.org/10.1371/journal.pone.0157907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shimoyama H, Nakajima M, Naka H et al (2004) Up-regulation of interleukin-2 mRNA in children with idiopathic nephrotic syndrome. Pediatr Nephrol 19:1115–1121. https://doi.org/10.1007/s00467-004-1569-y

    Article  PubMed  Google Scholar 

  20. Kalavrizioti D, Gerolymos M, Rodi M et al (2015) T helper (Th)-cytokines in the urine of patients with primary glomerulonephritis treated with immunosuppressive drugs: Can they predict outcome? Cytokine 76:260–269. https://doi.org/10.1016/j.cyto.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  21. Printza N, Papachristou F, Tzimouli V et al (2008) IL-18 is correlated with type-2 immune response in children with steroid sensitive nephrotic syndrome. Cytokine 44:262–268. https://doi.org/10.1016/j.cyto.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  22. Stangou M, Spartalis Μ, Daikidou D-V et al (2016) Impact of Τh1 and Τh2 cytokines in the progression of idiopathic nephrotic syndrome due to focal segmental glomerulosclerosis and minimal change disease. J Nephropathol 6:187–195. https://doi.org/10.15171/jnp.2017.32

  23. Zhou J, Shi F, Xun W (2018) Leptin, hs-CRP, IL-18 and urinary protein before and after treatment of children with nephrotic syndrome. Exp Ther Med 15:4426–4430. https://doi.org/10.3892/etm.2018.5923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim AH, Chung J-J, Akilesh S et al (2017) B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI insight 2. https://doi.org/10.1172/jci.insight.81836

  25. Ikeuchi Y, Kobayashi Y, Arakawa H et al (2009) Polymorphisms in interleukin-4-related genes in patients with minimal change nephrotic syndrome. Pediatr Nephrol 24:489–495. https://doi.org/10.1007/s00467-008-1003-y

    Article  PubMed  Google Scholar 

  26. Ha T-S, Nam JA, Seong S-B et al (2017) Montelukast improves the changes of cytoskeletal and adaptor proteins of human podocytes by interleukin-13. Inflamm Res 66:793–802. https://doi.org/10.1007/s00011-017-1058-y

    Article  CAS  PubMed  Google Scholar 

  27. Park SJ, Saleem MA, Nam J-A et al (2015) Effects of interleukin-13 and montelukast on the expression of zonula occludens-1 in human podocytes. Yonsei Med J 56:426–432. https://doi.org/10.3349/ymj.2015.56.2.426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsuji S, Akagawa S, Akagawa Y et al (2021) Idiopathic nephrotic syndrome in children: role of regulatory T cells and gut microbiota. Pediatr Res 89:1185–1191. https://doi.org/10.1038/s41390-020-1022-3

    Article  CAS  PubMed  Google Scholar 

  29. Guimarães FTL, Ferreira RN, Brito-Melo GEA et al (2019) Pediatric patients with steroid-sensitive nephrotic syndrome have higher expression of T regulatory lymphocytes in comparison to steroid-resistant disease. Front Pediatr 7:114. https://doi.org/10.3389/fped.2019.00114

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chan C-Y, Teo S, Lu L et al (2021) Low regulatory T-cells: a distinct immunological subgroup in minimal change nephrotic syndrome with early relapse following rituximab therapy. Transl Res. https://doi.org/10.1016/j.trsl.2021.03.019

    Article  PubMed  Google Scholar 

  31. Wang L, Li Q, Wang L et al (2013) The role of Th17/IL-17 in the pathogenesis of primary nephrotic syndrome in children. Kidney Blood Press Res 37:332–345. https://doi.org/10.1159/000350161

    Article  CAS  PubMed  Google Scholar 

  32. Shao XS, Yang XQ, Zhao XD et al (2009) The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr Nephrol 24:1683–1690. https://doi.org/10.1007/s00467-009-1194-x

    Article  PubMed  Google Scholar 

  33. Al-Eisa A, Al Rushood M, Al-Attiyah R (2017) Urinary excretion of IL-1β, IL-6 and IL-8 cytokines during relapse and remission of idiopathic nephrotic syndrome. J Inflamm Res 10:1–5. https://doi.org/10.2147/JIR.S124947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. May CJ, Welsh GI, Chesor M et al (2019) Human Th17 cells produce a soluble mediator that increases podocyte motility via signaling pathways that mimic PAR-1 activation. Am J Physiol Renal Physiol 317:F913–F921. https://doi.org/10.1152/ajprenal.00093.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goldwich A, Burkard M, Olke M et al (2013) Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol 24:906–916. https://doi.org/10.1681/ASN.2012020133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reiser J, von Gersdorff G, Loos M et al (2004) Induction of B7–1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397. https://doi.org/10.1172/JCI20402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garin EH, Diaz LN, Mu W et al (2009) Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 20:260–266. https://doi.org/10.1681/ASN.2007080836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishimoto T, Cara-Fuentes G, Wang H et al (2013) Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatr Nephrol 28:1803–1812. https://doi.org/10.1007/s00467-013-2498-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Garin EH, Mu W, Arthur JM et al (2010) Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 78:296–302. https://doi.org/10.1038/ki.2010.143

    Article  CAS  PubMed  Google Scholar 

  40. Ling C, Liu X, Shen Y et al (2015) Urinary CD80 levels as a diagnostic biomarker of minimal change disease. Pediatr Nephrol 30:309–316. https://doi.org/10.1007/s00467-014-2915-3

    Article  PubMed  Google Scholar 

  41. Ling C, Liu X, Shen Y et al (2018) Urinary CD80 excretion is a predictor of good outcome in children with primary nephrotic syndrome. Pediatr Nephrol 33:1183–1187. https://doi.org/10.1007/s00467-018-3885-7

    Article  PubMed  Google Scholar 

  42. Eroglu FK, Orhan D, İnözü M et al (2019) CD80 expression and infiltrating regulatory T cells in idiopathic nephrotic syndrome of childhood. Pediatr Int 61:1250–1256. https://doi.org/10.1111/ped.14005

    Article  CAS  PubMed  Google Scholar 

  43. Sellier-Leclerc A-L, Duval A, Riveron S et al (2007) A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J Am Soc Nephrol 18:2732–2739. https://doi.org/10.1681/ASN.2006121346

    Article  PubMed  Google Scholar 

  44. Lapillonne H, Leclerc A, Ulinski T et al (2008) Stem cell mobilization in idiopathic steroid-sensitive nephrotic syndrome. Pediatr Nephrol 23:1251–1256. https://doi.org/10.1007/s00467-008-0793-2

    Article  PubMed  Google Scholar 

  45. Ahmed MS, Wong CF (2007) Rituximab and nephrotic syndrome: a new therapeutic hope? Nephrol Dial Transplant 23:11–17. https://doi.org/10.1093/ndt/gfm683

    Article  PubMed  Google Scholar 

  46. Kallash M, Smoyer WE, Mahan JD (2019) Rituximab use in the management of childhood nephrotic syndrome. Front Pediatr 7:178. https://doi.org/10.3389/fped.2019.00178

    Article  PubMed  PubMed Central  Google Scholar 

  47. Printza N, Papachristou F, Tzimouli V et al (2009) Peripheral CD19+ B cells are increased in children with active steroid-sensitive nephrotic syndrome. NDT Plus 2:435–436. https://doi.org/10.1093/ndtplus/sfp087

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ravani P, Ponticelli A, Siciliano C et al (2013) Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor-dependent idiopathic nephrotic syndrome. Kidney Int 84:1025–1033. https://doi.org/10.1038/ki.2013.211

    Article  CAS  PubMed  Google Scholar 

  49. Ling C, Wang X, Chen Z et al (2019) Altered B-lymphocyte homeostasis in idiopathic nephrotic syndrome. Front Pediatr 7. https://doi.org/10.3389/fped.2019.00377

  50. Ling C, Chen Z, Fan J et al (2020) Decreased circulating transitional B-cell to memory B-cell ratio is a risk factor for relapse in children with steroid-sensitive nephrotic syndrome. Nephron. https://doi.org/10.1159/000511319

    Article  PubMed  Google Scholar 

  51. Colucci M, Carsetti R, Cascioli S et al (2019) B cell phenotype in pediatric idiopathic nephrotic syndrome. Pediatr Nephrol 34:177–181. https://doi.org/10.1007/s00467-018-4095-z

    Article  PubMed  Google Scholar 

  52. Colucci M, Carsetti R, Cascioli S et al (2016) B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol 27:1811–1822. https://doi.org/10.1681/ASN.2015050523

    Article  CAS  PubMed  Google Scholar 

  53. Dossier C, Jamin A, Deschênes G (2017) Idiopathic nephrotic syndrome: the EBV hypothesis. Pediatr Res 81:233–239

    Article  PubMed  Google Scholar 

  54. Jamin A, Berthelot L, Couderc A et al (2018) Autoantibodies against podocytic UCHL1 are associated with idiopathic nephrotic syndrome relapses and induce proteinuria in mice. J Autoimmun 89:149–161. https://doi.org/10.1016/j.jaut.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  55. Lombel RM, Gipson DS (2012) Hodson EM (2012) Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr Nephrol 283(28):415–426. https://doi.org/10.1007/S00467-012-2310-X

    Article  Google Scholar 

  56. Rovin BH, Adler SG, Barratt J et al (2021) Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int 100:753–779. https://doi.org/10.1016/J.KINT.2021.05.015

    Article  PubMed  Google Scholar 

  57. Trautmann A, Vivarelli M, Samuel S et al (2020) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 35:1529. https://doi.org/10.1007/S00467-020-04519-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Franco LM, Gadkari M, Howe KN et al (2019) Immune regulation by glucocorticoids can be linked to cell type–dependent transcriptional responses. J Exp Med 216:384. https://doi.org/10.1084/JEM.20180595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335:2. https://doi.org/10.1016/J.MCE.2010.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tokunaga A, Sugiyama D, Maeda Y et al (2019) Selective inhibition of low-affinity memory CD8+ T cells by corticosteroids. J Exp Med 216:2701–2713. https://doi.org/10.1084/JEM.20190738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Van LF, Baus E, Smyth LA et al (2001) Glucocorticoids attenuate T cell receptor signaling. J Exp Med 193:803. https://doi.org/10.1084/JEM.193.7.803

    Article  Google Scholar 

  62. Borel JF (1990) Mechanism of action and rationale for cyclosporin A in psoriasis. Br J Dermatol 122:5–12. https://doi.org/10.1111/J.1365-2133.1990.TB02876.X

    Article  PubMed  Google Scholar 

  63. Faul C, Donnelly M, Merscher-Gomez S et al (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938. https://doi.org/10.1038/nm.1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsuda K, Yamanaka K, Kitagawa H et al (2012) Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naïve T cells into cytokine-producing mature T cells. PLoS ONE 7:31465. https://doi.org/10.1371/JOURNAL.PONE.0031465

    Article  Google Scholar 

  65. Heidt S, Roelen DL, Eijsink C et al (2010) Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help. Clin Exp Immunol 159:199–207. https://doi.org/10.1111/j.1365-2249.2009.04051.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hilchey SP, Palshikar MG, Emo JA et al (2020) Cyclosporine a directly affects human and mouse b cell migration in vitro by disrupting a hIF-1 αdependent, o2 sensing, molecular switch. BMC Immunol 21. https://doi.org/10.1186/s12865-020-0342-8

  67. Allison A (2016) Mechanisms of action of mycophenolate mofetil: 14:2–8. https://doi.org/10.1191/0961203305LU2109OA

  68. Mühlig AK, Lee JY, Kemper MJ et al (2019) Levamisole in children with idiopathic nephrotic syndrome: clinical efficacy and pathophysiological aspects. J Clin Med 8:860. https://doi.org/10.3390/JCM8060860

    Article  PubMed Central  Google Scholar 

  69. Karni A, Balashov K, Hancock W et al (2004) Cyclophosphamide modulates CD4+ T cells into a T helper type 2 phenotype and reverses increased IFN-gamma production of CD8+ T cells in secondary progressive multiple sclerosis. J Neuroimmunol 146:189–198. https://doi.org/10.1016/J.JNEUROIM.2003.10.036

    Article  CAS  PubMed  Google Scholar 

  70. Ghiringhelli F, Menard C, Puig P et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648. https://doi.org/10.1007/S00262-006-0225-8

    Article  CAS  PubMed  Google Scholar 

  71. Yu C-C, Fornoni A, Weins A et al (2013) Abatacept in B7–1–positive proteinuric kidney disease. N Engl J Med 369:2416–2423. https://doi.org/10.1056/NEJMoa1304572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pilot study to evaluate the safety and efficacy of abatacept in adults and children 6 years and older with excessive loss of protein in the urine due to either focal segmental glomerulosclerosis (FSGS) or minimal change disease (MCD) - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02592798. Accessed 2 Oct 2021

  73. Trachtman H, Gipson DS, Somers M et al (2018) Randomized clinical trial design to assess abatacept in resistant nephrotic syndrome. Kidney Int Reports 3:115–121. https://doi.org/10.1016/j.ekir.2017.08.013

    Article  Google Scholar 

  74. Isom R, Shoor S, Higgins J et al (2019) Abatacept in steroid-dependent minimal change disease and CD80-uria. Kidney Int Reports 4:1349–1353. https://doi.org/10.1016/J.EKIR.2019.05.1155

    Article  Google Scholar 

  75. Sawires H, Abdelaziz H, Ahmed HM et al (2019) Randomized controlled trial on immunomodulatory effects of azithromycin in children with steroid-dependent nephrotic syndrome. Pediatr Nephrol 34:1591–1597. https://doi.org/10.1007/s00467-019-04251-5

    Article  PubMed  Google Scholar 

  76. Greenbaum LA, Benndorf R, Smoyer WE (2012) Childhood nephrotic syndrome—current and future therapies. Nat Rev Nephrol 8:445–458. https://doi.org/10.1038/nrneph.2012.115

    Article  CAS  PubMed  Google Scholar 

  77. Oshima Y, Sumida K, Yamanouchi M et al (2020) Corticosteroid reduction by addition of cetirizine and montelukast in biopsy-proven minimal-change nephrotic syndrome concomitant with allergic disorders. Sci Rep 10. https://doi.org/10.1038/s41598-020-58463-z

  78. Basu B (2014) Ofatumumab for rituximab-resistant nephrotic syndrome. 370:1268–1270. https://doi.org/10.1056/NEJMC1308488

  79. Bernard J, Bruel A, Allain-Launay E et al (2018) Ofatumumab in post-transplantation recurrence of a pediatric steroid-resistant idiopathic nephrotic syndrome. Pediatr Transplant 22:e13175. https://doi.org/10.1111/PETR.13175

    Article  PubMed  Google Scholar 

  80. Bernard J, Lalieve F, Sarlat J et al (2020) Ofatumumab treatment for nephrotic syndrome recurrence after pediatric renal transplantation. Pediatr Nephrol 358(35):1499–1506. https://doi.org/10.1007/S00467-020-04567-7

    Article  Google Scholar 

  81. Wang C-S, Liverman RS, Garro R et al (2017) Ofatumumab for the treatment of childhood nephrotic syndrome. Pediatr Nephrol 32:835–841. https://doi.org/10.1007/s00467-017-3621-8

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dossier C, Prim B, Moreau C et al (2021) A global antiB cell strategy combining obinutuzumab and daratumumab in severe pediatric nephrotic syndrome. Pediatr Nephrol 36:1. https://doi.org/10.1007/S00467-020-04811-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Konstantina Kitsou, Vana Spoulou; Writing — original draft preparation: Konstantina Kitsou, Vana Spoulou; Writing — review and editing: Konstantina Kitsou, Varvara Askiti, Andromachi Mitsioni, Vana Spoulou; Supervision: Vana Spoulou.

Corresponding author

Correspondence to Konstantina Kitsou.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Nicole Ritz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

431_2021_4357_MOESM1_ESM.pdf

Online Resource 1 (PDF file): Studies on the immunological mechanisms of Idiopathic Nephrotic Syndrome, conducted in children, their population characteristics, immunological parameters assessed and study outcomes. (PDF 167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitsou, K., Askiti, V., Mitsioni, A. et al. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. Eur J Pediatr 181, 1395–1404 (2022). https://doi.org/10.1007/s00431-021-04357-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-021-04357-9

Keywords

Navigation