Introduction

The 2020 publication of international point-of-care (POCUS) guidelines for neonatal and critical care providers identified numerous clinical POCUS applications supported by both graded level of evidence and expert opinion [1]. These guidelines build upon increasing data suggesting that, across pediatric disciplines, ultrasound imaging improves patient safety and provider procedural performance [2,3,4,5,6,7,8,9], introduces new clinical data [10, 11], expedites and changes management [12,13,14,15], and may improve outcomes [16,17,18]. Alongside robust adult data supporting POCUS use by clinicians in non-traditional imaging specialties, the question of why do we use POCUS continues to be asked and answered across clinical applications.

Although POCUS has experienced significant growth in clinical use by traditionally non-imaging based specialties, little time has been spent asking (or answering) the question “how” do we integrate POCUS in our practice? Quality healthcare ensures the delivery of safe and effective care, the value of which is assessed in the context of cost. Risk potentially impacts both the delivery of quality care and cost to providers, patients, and institutions. Frameworks for risk assessment exist across varied professional endeavors. A leading group within the National Health Service (NHS) in England recently published a risk assessment framework (RAF) to standardize methods of prospectively evaluating risks associated with clinical practice [19]. Importantly, the authors suggest that the RAF “should be tailored to the specific needs of the assessment” and is “not intended to be exhaustive.” Thus, the RAF provides a flexible and wholistic approach to identify, analyze, evaluate, and manage risk in the clinical setting (Table 1). This manuscript seeks to integrate concerns, experiences, and opinions from the literature as well as from our diverse international co-authorship within the RAF framework to assess pediatric POCUS risk.

Table 1 Risk assessment framework for point-of-care ultrasound

POCUS risk: current concerns

In 2020, the European Society of Paediatric Radiology (ESPR) published a position paper on the use of POCUS by non-radiology performers. In this position paper, multiple concerns were raised regarding translation of this technology to new practice environments. Current training platforms were described as a “gimmick,” and the practice itself is suggested to result in missed diagnosis, delayed therapeutics and increased costs for families and institutions [20]. Similarly, in 2020 the Emergency Care Research Institute (ECRI), a nonprofit organization designated as an Evidence-based Practice Center in the USA providing guidance for US healthcare regulatory agencies such the Agency for Healthcare Research and Quality (AHRQ) and the Joint Commission, identified POCUS as number 2 among the top 10 greatest technology hazards within healthcare. The ECRI stated that “safeguards for ensuring that POCUS users have the requisite training, experience, and skill have not kept pace with the speed of adoption. The lack of sufficient oversight increases the potential that patients will be adversely affected by problems associated with use, or lack of use, of the technology.”[21] Thus safety commissions, regulatory agencies, as well as our very own colleagues suggest that POCUS places providers, patients, and institutions at varied risks of adverse outcomes.

The POCUS community response to these statements has been swift and pointed. Representatives from the European Society of Emergency Pediatrics (ESEP), the Ultrasound Section of the European Society for Emergency Medicine (EUSEM), and the Pediatric Emergency Medicine Point-of Care Ultrasound (P2) “respectfully disagree with the conclusions [of the ESPR statement], especially the need for further oversight from our radiology colleagues.”[22] While the ESPR position statement recommends a well thought-out curriculum for each clinical specialty wishing to perform POCUS and lists European credentialing/certification methods for undergraduates, general radiology training, and radiology subspecialization, it should be noted that these are not requirements for licensing and performing pediatric ultrasound as a radiologist in Europe [20]. The “need for credentialing non-radiologists who want to become involved in non-radiologist point-of-care [ultrasound]” should be balanced by what is expected of radiologists themselves [23]. Similarly, a perspective published by adult and pediatric POCUS experts suggest that “if these statements [by the ECRI] are used to guide the governance of POCUS use in pediatric intensive care units (PICUs), the resulting policies may be overly restrictive of a practice that actually has several potential benefits” and that, within the ECRI report, “no objective data were presented” as a basis for concerns [24].

Three publications review POCUS litigation, none of which found medicolegal cases from the use of POCUS [25,26,27]. In fact, the only cases related to POCUS arose from its lack of use when the technology was available. Assessing medicolegal risk, though, is a forward-thinking process to prevent harm, whether to patient, provider, or institution. Therefore, components within a conceptual POCUS RAF may not be evidence-based and specific contributors to risk (and the weight of their contribution) will be heavily influenced by the local practice setting.

POCUS risk: identify

The identify phase defines the process being evaluated and the system in which the process is being performed. In this phase we must assess not only the safety of ultrasound technology itself but also how it is used by varied clinicians. In research terms, this might be referred to as assessing the efficacy of the technology and the effectiveness of its use when employed by providers. The Curie brothers discovered piezoelectricity over 140 years ago, and for over 80 years, the medical field has utilized ultrasound in clinical practice [28]. Ultrasound is also conceptually familiar to people outside of the medical profession, whether through knowledge of music, understanding methods of echolocation used by animals, or exposure to fetal assessment in pregnancy. Among technologies physicians incorporate at the bedside, there is likely a comfort with ultrasound that is shared between providers and patients.

Ultrasound is frequently cited as possessing a desirable safety profile since it does not utilize ionizing radiation for image acquisition. Risk assessment requires us to assess aspects of the technology that may result in harm. There are, indeed, safety concerns associated with the use of ultrasound including thermal bioeffects and inertial and non-inertial cavitation [29,30,31,32]. Neonates and pediatric patients, especially extremely premature infants, theoretically may be at greater risk of this non-thermal injury phenomena compared to adults, but no studies have been published demonstrating actual risk in human beings. The physical machine itself may also expose patients to unnecessary harm if not maintained appropriately. Ultrasound probes may be exposed to contaminated body fluids and present a risk of cross-transmission of pathogenic organisms [33, 34]. Finally, like any device, age and maintenance may impact machine capabilities. Aging transducer crystals and reduced processing speeds may result in diminished quality images [35]. Other electrical devices within clinical care may create artifacts within images on an ultrasound machine [36]. Thus, even the influence of the environment on the machine could result in suboptimal images for procedures and diagnostics.

The greatest risk regarding ultrasound use is from the users themselves. While literature does not identify prior litigation resulting from POCUS studies, we must acknowledge the potential for error and harm. From a procedural standpoint, ultrasound use has robust data supporting improved pediatric provider performance and patient safety and for almost 20 years has been promoted as standard of care for central vascular access by the National Institute for Health and Care Excellence [37]. For pediatric specialists performing invasive procedures, the greatest risk is likely not learning and employing ultrasound during these procedures.

Diagnostic POCUS carries the risk of misdiagnosis or missed diagnosis within the scope of clinical care. However, such a risk cannot be viewed solely specific to ultrasound. In fact, almost no clinical exam findings, serologic studies, or imaging modalities have 100% etiologic and/or pathophysiologic sensitivity and specificity. Our physical exam is fraught with inaccuracies, inconsistencies, and misleading data driving therapeutics and outcomes. The stethoscope, having over 200 years of integration within the practice of medicine, cannot always be trusted regardless of experience [38]. How we define risk requires contextualization within current practice and an appreciation for its benefit within pediatric and neonatal clinical care.

POCUS risk: analyze

This leads us to the analyze phase of risk assessment. What is the severity and likelihood of risk that we assume in performing ultrasound? And are there controls or methods by which we may mitigate this risk? The severity of risk is dependent upon the POCUS application performed. It is unlikely that severe harm will occur in a failed ultrasound-guided peripheral intravenous catheter insertion attempt. But imagine a POCUS evaluation of cardiac contractility interpreted as normal qualitative systolic function in a child with a clinical respiratory viral illness. What if this child is later identified to have severe systolic dysfunction on a complete echocardiogram and is subsequently diagnosed with myocarditis? Maybe the provider was correct in the initial interpretation and the cardiac dysfunction evolved over time. Or maybe the provider mis-interpreted the images and the dysfunction was present at the time of POCUS assessment. The risk to the patient is obvious, as therapies may not align with underlying pathophysiology, thereby increasing the risk of morbidity. But the risk to the provider, the department, and the institution is potentiated by factors other than the POCUS study itself. Risk increases if the provider did not receive adequate training or adequate supervision. Risk increases if the provider did not document findings. Risk increases if the provider documented an interpretation, but images were not saved and incorporated into the medical record. Risk increases if there is not a method of longitudinal assessment of physician skills. Risk increases if there are no national or institutional standards, for example, a credentialing process, for POCUS clinical integration. Thus, controls for risk involve developing infrastructural programmatic elements to standardize practice and ensure the adequate translation of training to practice (Fig. 1). Such controls are variably developed in current POCUS practice settings.

Fig. 1
figure 1

Suggested elements for program development. Infrastructural elements allow for support of effective curricular development and, through implementation processes, translates to quality care. Structure and process outcomes can be measured to assure benefit to patient, providers and institutions

Quantifying the level of risk for a patient, a provider and an institution is an imprecise form of calculus that integrates the potential likelihood and severity of risks and associated consequences and must be balanced with potential benefit. Robust data exists in pediatrics supporting effectiveness of both procedural and diagnostic ultrasound in the hands of skilled providers, and this literature is only going to increase with time and experience [39, 40]. Strategies for mitigating risk should be viewed as opportunities to promote patient safety and optimize clinical outcomes while also serving to protect providers and their local environment. Hence, developing a robust clinical governance around use of ultrasound in clinical practice can help in minimizing such risks.

POCUS risk: evaluate

The evaluate phase of risk assessment inventories current processes within the scope of mitigation strategies and solutions. This phase also evaluates the environment of practice for greater precision in assessing the degree of risk. The presence and absence of strategies and solutions are tied to local, national, and international standards. For example, training in specialty-specific POCUS is not standardized in any pediatric disciplines and there is no definition or methods of assessing for competency. Courses sponsored by societies and institutions exist to expose learners to limited applications, and there exist few practice guidelines or consensus statements regarding the role of POCUS in pediatric clinical care [1, 41,42,43]. Although POCUS and Targeted Neonatal Echocardiography (TNE) are certified in Switzerland by the Swiss Federation of Physicians, this is one of the very few certification processes that exist within pediatrics. Without external certification processes, nations and their individual pediatric institutions must define for themselves what entails appropriate training.

Infrastructural elements including image storage, documentation and quality assurance processes are essential components of sustainable POCUS programs, and a robust outline of elements to develop successful programs has been published by the American College of Emergency Physicians (ACEP) [44]. Quality assurance processes, in particular, can be challenging to build and maintain and will often require multidisciplinary support for implementation. Institutions with cardiology and radiology specialists may require their involvement in reviewing POCUS studies to confirm appropriate image acquisition quality and interpretative accuracy. There is no formal definition of quality assurance in POCUS, but there should be an effort made to create a longitudinal educational environment for refinement of POCUS skill. Mechanisms ensuring the oversight of educational objectives should ideally involve multidisciplinary specialist collaboration.

In assessing risk, providers and institutions must also understand local, national, and international laws and regulations related to medical care. There are two main categories of law: civil law and common law. Differences exist regarding assessment and assignment of negligence within these systems [45]. Medical malpractice in a common law system falls under the negligence tort which is summarized as a duty and failure to provide an accepted standard of care resulting in harm [46, 47]. In common law, negligence is assigned to an individual or individuals and results in compensation. A no-fault legal system requires identification of a causal relationship between treatment and injury but does not assign responsibility at the level of the individual [48]. Medical malpractice law in the USA is regulated by individual states, so there are subtle differences in tort negligence laws between states. Similarly, European countries may integrate tort law and no-fault systems in varied ways to optimize system efficiency and may also cap compensation [49,50,51]. Many countries, including Canada and most of those within Europe, have tort liability assessed by a judge, thereby shortening the time in which a decision is rendered. No-fault systems are practiced outside of the courtroom, and claims in New Zealand are adjudicated by a Medical Board review [52]. Practicing pediatrics, or a subspecialty within pediatrics, also reduces the risk of litigation as a recent survey demonstrated pediatrics as the 24th of 25 specialties in proportion of physicians facing malpractice claims. Yet the mean indemnity payments of malpractice suits were highest in pediatrics [53, 54]. In the USA, 34% of all physicians have been involved in a lawsuit [55]. When we integrate literature regarding malpractice claims with geographic and specialty-specific considerations, pediatric POCUS likely represents a low risk (but not “no riskˮ) practice in any current clinical setting, and risk tolerability is dependent upon local contexts of practice.

POCUS risk: manage

The approach to manage POCUS risk requires developing previously discussed infrastructural elements including technology and equipment, standardized training, image storage solutions, documentation processes, quality assurance methods and pathways to ensure provider competency in POCUS applications (Fig. 1, Table 2). A recent survey of academic pediatric critical care programs in the USA found that over 60% of divisions were performing diagnostic ultrasound in the clinical setting. Yet, despite frequent use of ultrasound, less than 25% of institutions were represented within core infrastructural elements suggested by ACEP [56]. At the time of publication, no division had over 25% of pediatric critical care clinicians credentialed in POCUS applications. Attention to each of these aspects of program development is another step towards protecting patients, providers, and institutions from risk, especially when POCUS will be widely performed by physicians and emerges as a standard of care.

Table 2 Point-of-care ultrasound risk and mitigation strategies by programmatic infrastructural element

This leads us to the most important element in risk mitigation: collaboration. Collaboration requires listening to the concerns expressed by others, whether physicians, administrators, or regulatory agencies. It involves working together to develop shared solutions. Curriculum build and training requires not only ideas and skill development by those within a specialty but also guidance from consultants outside the specialty. The American Society of Echocardiography recently published a statement recognizing and supporting the use of POCUS by adult clinicians and suggested methods by which echocardiography laboratories can assist in program development [57]. Departments and institutions may be unable to support robust quality assurance processes. External support systems may be modeled after telemedicine solutions used by groups such as Médecins Sans Frontières for POCUS quality assurance platforms in remote settings, and information technology growth has resulted in faster and cheaper storage platforms to integrate images and documents in the medical record [58]. Electronic health record solutions will undoubtedly be available to all practice settings if not already present. Finally, development of institutional processes to confirm competency requires collaboration with multi-specialty clinical and administrative leaders and represents institutional investment in safe and high quality pediatric care.

Conclusion

  • Risk analysis of any practice in medicine is a complex calculus incorporating the delivery of care by providers and institutions, the outcomes of patients, and the setting of clinical practice. POCUS use is likely to increase across all pediatric specialties and its translation to clinical care likely represents a low risk, but not no-risk practice. Though a clinician may currently work in an environment with limited medicolegal risk, legal frameworks are likely to evolve with an emerging emphasis on quality and safety across the medical field. We suggest that listening to concerns and partnering with experienced providers, administrators, and regulatory agencies will not only help to develop strategies towards risk reduction, but also result in a practice structure that improves provider performance and patient outcome.