Skip to main content
Log in

Electrical velocimetry for non-invasive monitoring of the closure of the ductus arteriosus in preterm infants

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Closure of a patent ductus arteriosus (PDA) in preterm infants modifies cardiac output and induces adaptive changes in the hemodynamic situation. The present study aims to analyze those changes, through a non-invasive cardiac output monitor based on blood electrical velocimetry, in preterm babies. A prospective observational study of preterm infants with a gestational age of less than 28 weeks, and a hemodynamic significant PDA, requires intravenous ibuprofen or surgical closure. All patients were monitored with electrical velocimetry before treatment and through the following 72 h. Two groups were defined, ibuprofen and surgical closure. Variations of cardiac output were analyzed from the basal situation and at 1, 8, 24, 48, and 72 h on each group. During a 12-month period, 18 patients were studied. The median gestational age in the ibuprofen group (12/18) was 26+5 weeks (25+5–27+3) with a median birth weight of 875 (670–1010) g. The cardiac output index (CI) value was 0.29 l/kg/min (0.24–0.34). Among the patients with confirmed ductus closure (50%), a significant CI decrease was shown (0.24 vs 0.29 l/kg/min; P 0.03) after 72 h (three ibuprofen doses). A statistically significant decrease in systolic volume (SVI) was found: 1.62 vs 1.88 ml/kg, P 0.03 with a decrease in contractility (ICON), 85 vs 140, P 0.02. The gestational age in the surgical group (6/18) was 25+2 weeks (24–26+3) with a median weight of 745 (660–820) g. All patients in this group showed a decrease in the immediate postoperative CI (1 h after surgery) 0.24 vs 0.30 l/kg/min, P 0.05, and a significant decrease in contractility (ICON 77 vs 147, P 0.03). In addition, a no statistically significant decrease in SVI (1.54 vs 1.83 ml/kg, P 0.06), as well as an increase in systemic vascular resistance (10,615 vs 8797 dyn/cm2, P 0.08), were detected. This deterioration was transient without significant differences in the remaining periods of time evaluated.

Conclusion: The surgical closure of the PDA in preterm infants causes a transient deterioration of cardiac function linked to a documented decrease in the left ventricular output. The hemodynamic changes detected after pharmacological PDA closure are similar but those patients present a better clinical tolerance to changes in the cardiac output.

What is Known:

• Surgical ductus closure generates acute hemodynamic changes in cardiac output and left ventricular function.

What is New:

• The hemodynamic changes detected after pharmacological ductus closure are similar to those found in the surgical closure. Electrical velocimetry can detect those changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CI:

cardiac index

ECHO:

echocardiography

EV:

electrical velocimetry

HFOV:

high-frequency oscillatory ventilation

ICON:

contractility

LA:Ao:

left atrial:aortic root ratio

LPA:

left pulmonary artery

nCPAP:

nasal CPAP

PDA:

patent ductus arteriosus

PLCS:

postligation cardiac syndrome

SI:

stroke volume index

SVRI:

systemic vascular resistances index

References

  1. Giliberti P, De Leonibus C, Giordano L et al (2009) The physiopathology of the patent ductus arteriosus. J Matern Fetal Neonatal Med 22(sup3):6–9. https://doi.org/10.1080/14767050903198215

    Article  PubMed  Google Scholar 

  2. Lindner W, Seidel M, Versmold HT, Döhlemann C, Riegel KP (1990) Stroke volume and left ventricular output in preterm infants with patent ductus arteriosus. Pediatr Res 27(3):278–281. https://doi.org/10.1203/00006450-199003000-00015

    Article  CAS  PubMed  Google Scholar 

  3. NcNamara PJ, Stewart L, Shivananda SP et al (2010) Patent ductus arteriosus ligation is associated with impaired left ventricular systolic performance in premature infants weighing less than 1000g. J Thorac Cardiovasc Surg 140(1):150–157. https://doi.org/10.1016/j.jtcvs.2010.01.011

    Article  Google Scholar 

  4. Jain A, Sahni M, El-Khuffash et al (2012) Use of targeted neonatal echocardiography to prevent postoperative cardiorespiratory instability after patent ductus arteriosus ligation. J Pediatr 160(4):584–589. https://doi.org/10.1016/j.jpeds.2011.09.027

    Article  PubMed  Google Scholar 

  5. Noori S, Friedlich P, Seri I, Wong P (2007) Changes in myocardial function and hemodynamics after ligation of the ductus arteriosus in preterm infants. J Pediatr 150(6):597–602. https://doi.org/10.1016/j.jpeds.2007.01.035

    Article  PubMed  Google Scholar 

  6. El-Khuffash A, Jain A, Weisz D (2014) Assessment and treatment of post patent ductus arteriosus ligation syndrome. J Pediatr 165(1):46–52. https://doi.org/10.1016/j.jpeds.2014.03.048

    Article  CAS  PubMed  Google Scholar 

  7. Suttner S, Schöllhorn T, Boldt J, Mayer J, Röhm KD, Lang K, Piper SN (2006) Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med 32(12):2053–2058. https://doi.org/10.1007/s00134-006-0409-x

    Article  PubMed  Google Scholar 

  8. Norozi K, Beck C, Osthaus WA, Wille I, Wessel A, Bertram H (2008) Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth 100(1):88–94. https://doi.org/10.1093/bja/aem320

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt C, Theilmeier G, Van Aken H et al (2005) Comparison of electrical velocimetry and transesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth 95(5):603–610. https://doi.org/10.1093/bja/aei224

    Article  CAS  PubMed  Google Scholar 

  10. Noori S, Drabu B, Soleymani S et al (2012) Continuous non-invasive cardiac output measurements in the neonate by electrical velocimetry: a comparison with echocardiography. Arch Dis Child Fetal Neonatal 97:340–343

    Article  Google Scholar 

  11. Song R, Rich W, Kim JH et al (2014) The use of electrical cardiometry for continuous cardiac output monitoring in preterm neonates: a validation study. Am J Perinatol 31(12):1105–1110. https://doi.org/10.1055/s-0034-1371707

    Article  CAS  PubMed  Google Scholar 

  12. Grollmuss O, González P (2014) Non-invasive cardiac output measurement in low and very low birth weight infants: a method comparison. Front Pediatr 25:2–16

    Google Scholar 

  13. Lien R, Hsu KH, Chu JJ, Chang YS (2015) Hemodynamic alterations recorded by electrical cardiometry during ligation of ductus arteriosus in preterm infants. Eur J Pediatr 174(4):543–550. https://doi.org/10.1007/s00431-014-2437-9

    Article  PubMed  Google Scholar 

  14. Weisz DE, Jain A, Ting J (2014) Non-invasive cardiac output monitoring in preterm infants undergoing patent ductus arteriosus ligation: a comparison with echocardiography. Neonatology 106(4):330–336. https://doi.org/10.1159/000365278

    Article  PubMed  Google Scholar 

  15. Kluckow M, Evans N (1995) Early echocardiographic prediction of symptomatic patent ductus arteriosus in preterm infants undergoing mechanical ventilation. J Pediatr 127(5):774–779. https://doi.org/10.1016/S0022-3476(95)70172-9

    Article  CAS  PubMed  Google Scholar 

  16. Kluckow M, Evans N (2000) Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed 82(3):F182–F187. https://doi.org/10.1136/fn.82.3.F182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iyer P, Evans N (1994) Re-evaluation of the left atrial to aortic root ratio as a marker of patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed 70(2):F112–F117. https://doi.org/10.1136/fn.70.2.F112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. ICON/AesculonBrochure. Available from http://www.osypkamed.com/products/monitors/aesculon Accessed 05/12/17

  19. Berstein DP, Lemmens HJ (2005) Stroke volume equation for impedance cardiography. Med Biol End Comput 43(4):443–450. https://doi.org/10.1007/BF02344724

    Article  Google Scholar 

  20. Benders MJ, van de Bor M, van Bel F et al (1999) Doppler sonographic study of the effect of indomethacin on cardiac and pulmonary hemodynamics of the preterm infant. Eur J Ultrasound 9(2):107–116. https://doi.org/10.1016/S0929-8266(99)00020-8

    Article  CAS  PubMed  Google Scholar 

  21. Blohm ME, Obrecht D, Hartwich J, Mueller GC, Kersten JF, Weil J, Singer D (2014) Impedance cardiography (electrical velocimetry) and transthoracic echocardiography for non-invasive cardiac output monitoring in pediatric intensive care patients: a prospective single-center observational study. Crit Care 18(6):603. https://doi.org/10.1186/s13054-014-0603-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Torigoe T, Sato S, Nagayama Y, Sato T, Yamazaki H (2015) Influence of patent ductus arteriosus and ventilators on electrical velocimetry for measuring cardiac output in very low/low birth weight infants. J Perinatol 35(7):485–489. https://doi.org/10.1038/jp.2014.245

    Article  CAS  PubMed  Google Scholar 

  23. Blohm HJ, Obrecht D et al (2017) Effect of patent ductus arteriosus and patent foramen ovale on left ventricular stroke volume measurement by electrical velocimetry in comparison to transthoracic echocardiography in neonates. J Clin Monit Comput 31:589–598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rodríguez Sánchez de la Blanca, A: Coordination, study design, patients inclusion, data analysis, and text redaction.

Sanchez Luna, M: Supervision and study design.

González Pacheco, N: Patient inclusion.

Arriaga Redondo, M: Data analysis.

Navarro Patiño, N: patients inclusion.

Corresponding author

Correspondence to Ana Rodríguez Sánchez de la Blanca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Parental informed consent was obtained, and the Hospital Ethics Committee approved the study.

Additional information

Communicated by Patrick Van Reempts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez Sánchez de la Blanca, A., Sánchez Luna, M., González Pacheco, N. et al. Electrical velocimetry for non-invasive monitoring of the closure of the ductus arteriosus in preterm infants. Eur J Pediatr 177, 229–235 (2018). https://doi.org/10.1007/s00431-017-3063-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-017-3063-0

Keywords

Navigation