Skip to main content
Log in

Population pharmacokinetics of doxapram in low-birth-weight Japanese infants with apnea

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

This study aimed to determine the population pharmacokinetics of doxapram in low-birth-weight (LBW) infants. A total of 92 serum concentration measurements that were obtained from 34 Japanese neonates were analyzed using nonlinear mixed-effect modeling (NONMEM). Estimates generated by NONMEM indicated that clearance of doxapram (CL; L/kg/h) was affected by postmenstrual age (PMA; weeks), body weight (BW; g), and aspartate aminotransferase (AST; IU/L). In addition, the volume of distribution (Vd; L/kg) was affected by gestational age (GA; weeks). The final pharmacokinetic model was as follows: CL = BW / PMA × 0.0453 × serum AST−0.373; Vd = 2.54 (if GA >28 weeks) and Vd = 2.54 × 2.11 (if GA ≤28 weeks). The interindividual variabilities in CL and Vd were 39.9 and 83.0 %, respectively, and the residual variability was 20.9 %. To clarify the reasons for large interindividual variations, the enzymes involved in the metabolic pathway of doxapram were also determined. We found that doxapram was metabolized by CYP3A4/5.

Conclusion: We report the population pharmacokinetics of doxapram in neonates and the involvement of CYP3A4/5 in its metabolism. The final model of population pharmacokinetics may be useful for formulating a safe and effective dosage regimen and for predicting serum doxapram concentrations in neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AOP:

Apnea of prematurity

AST:

Aspartate aminotransferase

BW:

Body weight

CL:

Clearance

GA:

Gestational age

HLM:

Human liver microsomes

HPLC:

High-performance liquid chromatography

LBW infants:

Low-birth-weight infants

MAE:

Mean absolute error

ME:

Mean prediction error

MS:

Mass spectrometry

NONMEM:

Nonlinear mixed-effect modeling

PMA:

Postmenstrual age

PNA:

Postnatal age

OBJ:

Objective function

Vd:

Volume of distribution

References

  1. Alden ER, Mandelkorn T, Woodrum DE, Wennberg RP, Parks CR, Hodson WA (1972) Morbidity and mortality of infants weighing less than 1,000 grams in an intensive care nursery. Pediatrics 50:40–49

    CAS  PubMed  Google Scholar 

  2. Allegaert K, Anderson BJ, van den Anker JN, Vanhaesebrouck S, de Zegher F (2007) Renal drug clearance in preterm neonates: relation to prenatal growth. Ther Drug Monit 29:284–291

    Article  CAS  PubMed  Google Scholar 

  3. Alpan G, Eyal F, Sagi E, Springer C, Patz D, Goder K (1984) Doxapram in the treatment of idiopathic apnea of prematurity unresponsive to aminophylline. J Pediatr 104:634–637

    Article  CAS  PubMed  Google Scholar 

  4. Anderson BJ, Allegaert K, Holford NH (2006) Population clinical pharmacology of children: general principles. Eur J Pediatr 165:741–746

    Article  PubMed  Google Scholar 

  5. Aranda JV, Beharry K, Rex J, Linder N, Blanchard P (1988) High pressure liquid chromatographic microassay for simultaneous measurement of doxapram and its metabolites in premature newborn infants. J Liq Chromatogr 11:2983–2991

    Article  CAS  Google Scholar 

  6. Bairam A, Blanchard PW, Mullahoo K, Beharry K, Laudignon N, Aranda JV (1990) Pharmacodynamic effects and pharmacokinetic profiles of keto-doxapram and doxapram in newborn lambs. Pediatr Res 28:142–146

    CAS  PubMed  Google Scholar 

  7. Bairam A, Branchaud C, Beharry K, Rex J, Laudignon N, Papageorgiou A, Aranda JV (1991) Doxapram metabolism in human fetal hepatic organ culture. Clin Pharmacol Ther 50:32–38

    Article  CAS  PubMed  Google Scholar 

  8. Barbé F, Hansen C, Badonnel Y, Legagneur H, Vert P, Boutroy MJ (1999) Severe side effects and drug plasma concentrations in preterm infants treated with doxapram. Ther Drug Monit 21:547–552

    Article  PubMed  Google Scholar 

  9. Barrington KJ, Finer NN, Torok-Both G, Jamali F, Coutts RT (1987) Dose–response relationship of doxapram in the therapy for refractory idiopathic apnea of prematurity. Pediatrics 80:22–27

    CAS  PubMed  Google Scholar 

  10. Beaudry MA, Bradley JM, Gramlich LM, LeGatt D (1988) Pharmacokinetics of doxapram in idiopathic apnea of prematurity. Dev Pharmacol Ther 11:65–72

    CAS  PubMed  Google Scholar 

  11. Brion LP, Vega-Rich C, Reinersman G, Roth P (1991) Low-dose doxapram for apnea unresponsive to aminophylline in very low birthweight infants. J Perinatol 11:359–364

    CAS  PubMed  Google Scholar 

  12. Coutts RT, Jamali F, Malek F, Peliowski A, Finer NN (1991) Urinary metabolites of doxapram in premature neonates. Xenobiotica 21:1407–1418

    Article  CAS  PubMed  Google Scholar 

  13. Eyal F, Alpan G, Sagi E, Glick B, Peleg O, Dgani Y, Arad I (1985) Aminophylline versus doxapram in idiopathic apnea of prematurity: a double-blind controlled study. Pediatrics 75:709–713

    CAS  PubMed  Google Scholar 

  14. Fukuda T, Yukawa E, Kondo G, Maeda T, Shin-o T, Kondo Y, Imamura T, Irikura M, Irie T (2005) Population pharmacokinetics of theophylline in very premature Japanese infants with apnoea. J Clin Pharm Ther 30:591–596

    Article  CAS  PubMed  Google Scholar 

  15. Hayakawa F, Hakamada S, Kuno K, Nakashima T, Miyachi Y (1986) Doxapram in the treatment of idiopathic apnea of prematurity: desirable dosage and serum concentrations. J Pediatr 109:138–140

    Article  CAS  PubMed  Google Scholar 

  16. Higuchi S, Aoyama T, Horioka M (1987) PEDA: a microcomputer program for parameter estimation and dosage adjustment in clinical practice. J Pharmacobiodyn 10:703–718

    Article  CAS  PubMed  Google Scholar 

  17. Hines RN (2007) Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol 21:169–175

    Article  CAS  PubMed  Google Scholar 

  18. Jamali F, Barrington KJ, Finer NN, Coutts RT, Torok-Both GA (1988) Doxapram dosage regimen in apnea of prematurity based on pharmacokinetic data. Dev Pharmacol Ther 11:253–257

    CAS  PubMed  Google Scholar 

  19. Jamali F, Coutts RT, Malek F, Finer NN, Peliowski A (1991) Lack of a pharmacokinetic interaction between doxapram and theophylline in apnea of prematurity. Dev Pharmacol Ther 16:78–82

    CAS  PubMed  Google Scholar 

  20. Kumita H, Mizuno S, Shinohara M, Ichikawa T, Yamazaki T (1991) Low-dose doxapram therapy in premature infants and its CSF and serum concentrations. Acta Paediatr Scand 80:786–791

    Article  CAS  PubMed  Google Scholar 

  21. Lee TC, Charles B, Steer P, Flenady V, Shearman A (1997) Population pharmacokinetics of intravenous caffeine in neonates with apnea of prematurity. Clin Pharmacol Ther 61:628–640

    Article  CAS  PubMed  Google Scholar 

  22. Mohangoo AD, Blondel B, Gissler M, Velebil P, Macfarlane A, Zeitlin J, Committee E-PS (2013) International comparisons of fetal and neonatal mortality rates in high-income countries: should exclusion thresholds be based on birth weight or gestational age? PLoS One 8:e64869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ogawa Y, Irikura M, Tomiyasu M, Uryu M, Ishitsuka Y, Kondo Y, Yamazaki T, Yukawa E, Irie T (2013) Dosage regimen of low-dose doxapram for treatment of low-birth weight infants with idiopathic apnea of prematurity. Japan J Dev Pharmacol Ther 26:97–101

    Google Scholar 

  24. Pediatrics CoFaNAAo (2003) Apnea, sudden infant death syndrome, and home monitoring. Pediatrics 111:914–917

    Article  Google Scholar 

  25. Peliowski A, Finer NN (1990) A blinded, randomized, placebo-controlled trial to compare theophylline and doxapram for the treatment of apnea of prematurity. J Pediatr 116:648–653

    Article  CAS  PubMed  Google Scholar 

  26. Prins SA, Pans SJ, van Weissenbruch MM, Walther FJ, Simons SH (2013) Doxapram use for apnoea of prematurity in neonatal intensive care. Int J Pediatr 2013:251047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Robinson D, Weiner CP, Nakamura KT, Robillard JE (1990) Effect of intrauterine growth retardation on renal function on day one of life. Am J Perinatol 7:343–346

    Article  CAS  PubMed  Google Scholar 

  28. Robson RH, Prescott LF (1979) A pharmacokinetic study of doxapram in patients and volunteers. Br J Clin Pharmacol 7:81–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV, Davis PG, Tin W, Moddemann D, Solimano A, Ohlsson A, Barrington KJ, Roberts RS, Investigators CAPCT (2012) Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA 307:275–282

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W, Group CfAoPT (2007) Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 357:1893–1902

    Article  CAS  PubMed  Google Scholar 

  31. Sheiner LB, Beal SL (1981) Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 9:503–512

    Article  CAS  PubMed  Google Scholar 

  32. Silver LE, Decamps PJ, Korst LM, Platt LD, Castro L (2003) Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am J Obstet Gynecol 188:1320–1325

    Article  PubMed  Google Scholar 

  33. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, Zaya MJ (2003) Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 307:573–582

    Article  CAS  PubMed  Google Scholar 

  34. Tay-Uyboco J, Kwiatkowski K, Cates DB, Seifert B, Hasan SU, Rigatto H (1991) Clinical and physiological responses to prolonged nasogastric administration of doxapram for apnea of prematurity. Biol Neonate 59:190–200

    Article  CAS  PubMed  Google Scholar 

  35. Victor S, Dickinson H, Turner MA (2011) Plasma aminotransferase concentrations in preterm infants. Arch Dis Child Fetal Neonatal Ed 96:F144–F145

    Article  CAS  PubMed  Google Scholar 

  36. Yamazaki T (2013) The efficacy of doxapram for apnea in low birth weight infants. Multi-center, randomized, double-blind, controlled trial by neonatal research network. Perinat Med 43:603–610

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in-aid for scientific research from the Ministry of Health, Labour and Welfare (Research Project Number: 23590189) and by the doxapram group of the Neonatal Research Network. The following investigators and research staff (no particular order) contributed to the trial. Fujita Health University, Aichi, Japan: Toshio Yamazaki, Tadayoshi Hata, Shuji Hashimoto, and Hiroko Mizutani; Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan: Hiroyuki Kitajima, Masanori Fujimura, and Shinya Hirano; Kumamoto University, Kumamoto, Japan: Tetsumi Irie and Mitsuru Irikura; Kakogawa City Hospital, Hyogo, Japan: Akihito Ishida and Masanori Murase; Toyohashi Municipal Hospital, Aichi, Japan: Norihisa Koyama; Hiroshima City Hospital, Hiroshima, Japan: Michiko Hayashidani; Shiga University of Medical Science, Shiga, Japan: Hirofumi Aotani; National Center for Child Health and Development, Tokyo, Japan: Hidefumi Nakamura; Kagawa University, Kagawa, Japan: Susumu Itoh; and Kissei Pharmaceutical Co., Ltd., Nagano, Japan: Mutsuo Kanzawa. Doxapram used in this study was donated by Kissei Pharmaceutical Co. Ltd.

Ethical standards

This study was approved by the ethics committee at the each institution. Parents of eligible LBW infants gave written informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsumi Irie.

Additional information

Communicated by Patrick Van Reempts

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(XLSX 13 kb)

Online Resource 2

Assay procedure of doxapram and keto-doxapram. (PPTX 35 kb)

Online Resource 3

(A) Chromatogram of the 10 μM internal standard (a). (B) Chromatogram of the 10 μM internal standard, 6.7 μM doxapram (b), and 7.3 μM keto-doxapram (c). (C) Chromatogram of LBW infants receiving a maintenance dose of 0.20 mg/kg/h after a loading dose of 1.5 mg/kg for 1 h. Values indicate the retention time. (PPTX 77 kb)

Online Resource 4

(A) Chromatogram of keto-doxapram (m/z 393). (B) Chromatogram of midazolam as the internal standard (m/z 326). (PPTX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, Y., Irikura, M., Kobaru, Y. et al. Population pharmacokinetics of doxapram in low-birth-weight Japanese infants with apnea. Eur J Pediatr 174, 509–518 (2015). https://doi.org/10.1007/s00431-014-2416-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-014-2416-1

Keywords

Navigation