Skip to main content

Advertisement

Log in

Impact of immunosuppressive and antifungal drugs on PBMC- and whole blood-based flow cytometric CD154+ Aspergillus fumigatus specific T-cell quantification

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Flow cytometric quantification of CD154+ mould specific T-cells in antigen-stimulated peripheral blood mononuclear cells (PBMCs) or whole blood has been described as a supportive biomarker to diagnose invasive mould infections and to monitor therapeutic outcomes. As patients at risk frequently receive immunosuppressive and antifungal medication, this study compared the matrix-dependent impact of representative drugs on CD154+ T-cell detection rates. PBMCs and whole blood samples from healthy adults were pre-treated with therapeutic concentrations of liposomal amphotericin B, voriconazole, posaconazole, cyclosporine A (CsA) or prednisolone. Samples were then stimulated with an Aspergillus fumigatus lysate or a viral antigen cocktail (CPI) and assessed for CD154+ T-helper cell frequencies. Specific T-cell detection rates and technical assay properties remained largely unaffected by exposure of both matrices to the studied antifungals. By contrast, CsA and prednisolone pre-treatment of isolated PBMCs and whole blood adversely impacted specific T-cell detection rates and caused elevated inter-replicate variation. Unexpectedly, the whole blood-based protocol that uses additional α-CD49d co-stimulation was less susceptible to CsA and prednisolone despite prolonged drug exposure in the test tube. Accordingly, addition of α-CD49d during PBMC stimulation partially attenuated the impact of immunosuppressive drugs on test performance. Translating these results into the clinical setting, false-negative results of CD154+ antigen-specific T-cell quantification need to be considered in patients receiving T-cell-active immunosuppressive medication. Optimized co-stimulation regimes with α-CD49d could contribute to an improved feasibility of functional T-cell assays in immunocompromised patient populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Park SJ, Mehrad B (2009) Innate immunity to Aspergillus species. Clin Microbiol Rev 22:535–551

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fukuda T, Boeckh M, Carter RA, Sandmaier BM, Maris MB, Maloney DG, Martin PJ, Storb RF, Marr KA (2003) Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood 102:827–833

    CAS  PubMed  Google Scholar 

  3. Chamilos G, Lewis RE, Kontoyiannis DP (2008) Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis 47:503–509

    PubMed  Google Scholar 

  4. Cornely OA, Arikan-Akdagli S, Dannaoui E, Groll AH, Lagrou K, Chakrabarti A, Lanternier F, Pagano L, Skiada A, Akova M, Arendrup MC, Boekhout T, Chowdhary A, Cuenca-Estrella M, Freiberger T, Guinea J, Guarro J, de Hoog S, Hope W, Johnson E, Kathuria S, Lackner M, Lass-Florl C, Lortholary O, Meis JF, Meletiadis J, Munoz P, Richardson M, Roilides E, Tortorano AM, Ullmann AJ, van Diepeningen A, Verweij P, Petrikkos G, European Society of Clinical M, Infectious Diseases Fungal Infection Study G (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis. Clin Microbiol Infect 20(Suppl 3):5–26

    CAS  PubMed  Google Scholar 

  5. Johnson G, Ferrini A, Dolan SK, Nolan T, Agrawal S, Doyle S, Bustin SA (2014) Biomarkers for invasive aspergillosis: the challenges continue. Biomark Med 8:429–451

    CAS  PubMed  Google Scholar 

  6. Bacher P, Steinbach A, Kniemeyer O, Hamprecht A, Assenmacher M, Vehreschild MJ, Vehreschild JJ, Brakhage AA, Cornely OA, Scheffold A (2015) Fungus-specific CD4(+) T cells for rapid identification of invasive pulmonary mold infection. Am J Respir Crit Care Med 191:348–352

    PubMed  Google Scholar 

  7. Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Beauvais A, Beau R, Candoni A, Maertens J, Rossi G, Morselli M, Zanetti E, Quadrelli C, Codeluppi M, Guaraldi G, Pagano L, Caira M, Del Giovane C, Maccaferri M, Stefani A, Morandi U, Tazzioli G, Girardis M, Delia M, Specchia G, Longo G, Marasca R, Narni F, Merli F, Imovilli A, Apolone G, Carvalho A, Comoli P, Romani L, Latge JP, Luppi M (2013) Characterization of specific immune responses to different Aspergillus antigens during the course of invasive Aspergillosis in hematologic patients. PLoS ONE 8:e74326

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Potenza L, Vallerini D, Barozzi P, Riva G, Gilioli A, Forghieri F, Candoni A, Cesaro S, Quadrelli C, Maertens J, Rossi G, Morselli M, Codeluppi M, Mussini C, Colaci E, Messerotti A, Paolini A, Maccaferri M, Fantuzzi V, Del Giovane C, Stefani A, Morandi U, Maffei R, Marasca R, Narni F, Fanin R, Comoli P, Romani L, Beauvais A, Viale PL, Latge JP, Lewis RE, Luppi M (2016) Mucorales-specific T cells in patients with hematologic malignancies. PLoS ONE 11:e0149108

    PubMed  PubMed Central  Google Scholar 

  9. Koehler FC, Cornely OA, Wisplinghoff H, Schauss AC, Salmanton-Garcia J, Ostermann H, Ziegler M, Bacher P, Scheffold A, Alex R, Richter A, Koehler P (2018) Candida-reactive T cells for the diagnosis of invasive candida infection-A prospective pilot study. Front Microbiol. 9:1381

    PubMed  PubMed Central  Google Scholar 

  10. Steinbach A, Cornely OA, Wisplinghoff H, Schauss AC, Vehreschild JJ, Rybniker J, Hamprecht A, Richter A, Bacher P, Scheffold A, Koehler P (2019) Mould-reactive T cells for the diagnosis of invasive mould infection-A prospective study. Mycoses 62(7):562–569

    CAS  PubMed  Google Scholar 

  11. Wurster S, Weis P, Page L, Lazariotou M, Einsele H, Ullmann AJ (2017) Quantification of A. fumigatus-specific CD154+T-cells-preanalytic considerations. Med Mycol 55:223–227

    CAS  PubMed  Google Scholar 

  12. Afonso G, Scotto M, Renand A, Arvastsson J, Vassilieff D, Cilio CM, Mallone R (2010) Critical parameters in blood processing for T-cell assays: validation on ELISpot and tetramer platforms. J Immunol Methods 359:28–36

    CAS  PubMed  Google Scholar 

  13. Mallone R, Mannering SI, Brooks-Worrell BM, Durinovic-Bello I, Cilio CM, Wong FS, Schloot NC, T-Cell Workshop Committee IoDS (2011) Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell workshop committee of the immunology of diabetes society. Clin Exp Immunol 163:33–49

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lauruschkat CD, Wurster S, Page L, Lazariotou M, Dragan M, Weis P, Ullmann AJ, Einsele H, Löffler J (2018) Susceptibility of A. fumigatus-specific T-cell assays to pre-analytic blood storage and PBMC cryopreservation greatly depends on readout platform and analytes. Mycoses 61(8):549–560

    CAS  PubMed  Google Scholar 

  15. Weis P, Helm J, Page L, Lauruschkat CD, Lazariotou M, Einsele H, Loeffler J, Ullmann AJ, Wurster S (2020) Development and evaluation of a whole blood-based approach for flow cytometric quantification of CD154+mould-reactive T cells. Med Mycol 58(2):187–196

    PubMed  Google Scholar 

  16. Sester U, Wilkens H, van Bentum K, Singh M, Sybrecht GW, Schafers HJ, Sester M (2009) Impaired detection of Mycobacterium tuberculosis immunity in patients using high levels of immunosuppressive drugs. Eur Respir J 34:702–710

    CAS  PubMed  Google Scholar 

  17. Helwig U, Muller M, Hedderich J, Schreiber S (2012) Corticosteroids and immunosuppressive therapy influence the result of QuantiFERON TB Gold testing in inflammatory bowel disease patients. J Crohns Colitis 6:419–424

    PubMed  Google Scholar 

  18. Ndzi EN, Nkenfou CN, Gwom LC, Fainguem N, Fokam J, Pefura Y (2016) The pros and cons of the QuantiFERON test for the diagnosis of tuberculosis, prediction of disease progression, and treatment monitoring. Int J Mycobacteriol 5:177–184

    PubMed  Google Scholar 

  19. Hedges JF, Mitchell AM, Jones K, Kimmel E, Ramstead AG, Snyder DT, Jutila MA (2015) Amphotericin B stimulates gammadelta T and NK cells, and enhances protection from Salmonella infection. Innate Immun 21:598–608

    CAS  PubMed  Google Scholar 

  20. Rogers PD, Jenkins JK, Chapman SW, Ndebele K, Chapman BA, Cleary JD (1998) Amphotericin B activation of human genes encoding for cytokines. J Infect Dis 178:1726–1733

    CAS  PubMed  Google Scholar 

  21. Shindo K, Fukumura M, Ito A (1998) Inhibitory effect of amphotericin B on leukotriene B4 synthesis in human neutrophils in vitro. Prostaglandins Leukot Essent Fatty Acids 58:105–109

    CAS  PubMed  Google Scholar 

  22. Sau K, Mambula SS, Latz E, Henneke P, Golenbock DT, Levitz SM (2003) The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J Biol Chem 278:37561–37568

    CAS  PubMed  Google Scholar 

  23. Choi JH, Kwon EY, Park CM, Choi SM, Lee DG, Yoo JH, Shin WS, Stevens DA (2010) Immunomodulatory effects of antifungal agents on the response of human monocytic cells to Aspergillus fumigatus conidia. Med Mycol 48:704–709

    CAS  PubMed  Google Scholar 

  24. Boggs JM, Chang NH, Goundalkar A (1991) Liposomal amphotericin B inhibits in vitro T-lymphocyte response to antigen. Antimicrob Agents Chemother 35:879–885

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Reyes E, Cardona J, Prieto A, Bernstein ED, Rodriguez-Zapata M, Pontes MJ, Alvarez-Mon M (2000) Liposomal amphotericin B and amphotericin B-deoxycholate show different immunoregulatory effects on human peripheral blood mononuclear cells. J Infect Dis 181:2003–2010

    CAS  PubMed  Google Scholar 

  26. Fidan I, Yesilyurt E, Kalkanci A, Aslan SO, Sahin N, Ogan MC, Dizbay M (2014) Immunomodulatory effects of voriconazole and caspofungin on human peripheral blood mononuclear cells stimulated by Candida albicans and Candida krusei. Am J Med Sci 348:219–223

    PubMed  Google Scholar 

  27. Britten CM, Janetzki S, Butterfield LH, Ferrari G, Gouttefangeas C, Huber C, Kalos M, Levitsky HI, Maecker HT, Melief CJ, O’Donnell-Tormey J, Odunsi K, Old LJ, Ottenhoff TH, Ottensmeier C, Pawelec G, Roederer M, Roep BO, Romero P, van der Burg SH, Walter S, Hoos A, Davis MM (2012) T cell assays and MIATA: the essential minimum for maximum impact. Immunity 37:1–2

    CAS  PubMed  Google Scholar 

  28. Schiller A, Zhang T, Li R, Duechting A, Sundararaman S, Przybyla A, Kuerten S, Lehmann PV (2017) A positive control for detection of functional CD4 T cells in PBMC: the CPI pool. Cells 6(4):E47

    PubMed  Google Scholar 

  29. Belard E, Semb S, Ruhwald M, Werlinrud AM, Soborg B, Jensen FK, Thomsen H, Brylov A, Hetland ML, Nordgaard-Lassen I, Ravn P (2011) Prednisolone treatment affects the performance of the QuantiFERON gold in-tube test and the tuberculin skin test in patients with autoimmune disorders screened for latent tuberculosis infection. Inflamm Bowel Dis 17:2340–2349

    PubMed  Google Scholar 

  30. Hewitt RJ, Singanayagam A, Sridhar S, Wickremasinghe M, Min Kon O (2015) Screening for latent tuberculosis before tumour necrosis factor antagonist therapy. Eur Respir J 45:1510–1512

    PubMed  Google Scholar 

  31. Tramsen L, Schmidt S, Roeger F, Schubert R, Salzmann-Manrique E, Latge JP, Klingebiel T, Lehrnbecher T (2014) Immunosuppressive compounds exhibit particular effects on functional properties of human anti-Aspergillus Th1 cells. Infect Immun 82:2649–2656

    PubMed  PubMed Central  Google Scholar 

  32. Fuleihan R, Ramesh N, Horner A, Ahern D, Belshaw PJ, Alberg DG, Stamenkovic I, Harmon W, Geha RS (1994) Cyclosporin A inhibits CD40 ligand expression in T lymphocytes. J Clin Invest 93:1315–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schubert LA, King G, Cron RQ, Lewis DB, Aruffo A, Hollenbaugh D (1995) The human gp39 promoter. Two distinct nuclear factors of activated T cell protein-binding elements contribute independently to transcriptional activation. J Biol Chem 270:29624–29627

    CAS  PubMed  Google Scholar 

  34. Jabara HH, Brodeur SR, Geha RS (2001) Glucocorticoids upregulate CD40 ligand expression and induce CD40L-dependent immunoglobulin isotype switching. J Clin Invest 107:371–378

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bischof F, Melms A (1998) Glucocorticoids inhibit CD40 ligand expression of peripheral CD4+lymphocytes. Cell Immunol 187:38–44

    CAS  PubMed  Google Scholar 

  36. Dasgupta A (2016) Limitations of immunoassays used for therapeutic drug monitoring of immunosuppressants. In: Oellerich M, Dasgupta A (eds) Personalized Immunosuppression in Transplantation. Elsevier, Amsterdam, pp 29–56

    Google Scholar 

  37. Leitner J, Drobits K, Pickl WF, Majdic O, Zlabinger G, Steinberger P (2011) The effects of Cyclosporine A and azathioprine on human T cells activated by different costimulatory signals. Immunol Lett 140:74–80

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghosh P, Sica A, Cippitelli M, Subleski J, Lahesmaa R, Young HA, Rice NR (1996) Activation of nuclear factor of activated T cells in a cyclosporin A-resistant pathway. J Biol Chem 271:7700–7704

    CAS  PubMed  Google Scholar 

  39. Gauduin MC (2006) Intracellular cytokine staining for the characterization and quantitation of antigen-specific T lymphocyte responses. Methods 38(4):263–273

    CAS  PubMed  Google Scholar 

  40. Waldrop SL, Davis KA, Maino VC, Picker LJ (1998) Normal human CD4+memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis. J Immunol 161:5284–5295

    CAS  PubMed  Google Scholar 

  41. Lemieux J, Jobin C, Simard C, Neron S (2016) A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and two-dimensional visualization analysis. J Immunol Methods 434:73–82

    CAS  PubMed  Google Scholar 

  42. Bacher P, Heinrich F, Stervbo U, Nienen M, Vahldieck M, Iwert C, Vogt K, Kollet J, Babel N, Sawitzki B, Schwarz C, Bereswill S, Heimesaat MM, Heine G, Gadermaier G, Asam C, Assenmacher M, Kniemeyer O, Brakhage AA, Ferreira F, Wallner M, Worm M, Scheffold A (2016) Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167(4):1067–1078

    CAS  PubMed  Google Scholar 

  43. Bacher P, Kniemeyer O, Teutschbein J, Thön M, Vödisch M, Wartenberg D, Scharf DH, Koester-Eiserfunke N, Schütte M, Dübel S, Assenmacher M, Brakhage AA, Scheffold A (2014) Identification of immunogenic antigens from Aspergillus fumigatus by direct multiparameter characterization of specific conventional and regulatory CD4+  cells. J Immunol. 193(7):3332–3343

    CAS  PubMed  Google Scholar 

  44. Page L, Weis P, Müller T, Dittrich M, Lazariotou M, Dragan M, Waaga-Gasser AM, Helm J, Dandekar T, Einsele H, Löffler J, Ullmann AJ, Wurster S (2018) Evaluation of Aspergillus and Mucorales specific T-cells and peripheral blood mononuclear cell cytokine signatures as biomarkers of environmental mold exposure. Int J Med Microbiol 308(8):1018–1026

    CAS  PubMed  Google Scholar 

  45. Thakur R, Anand R, Tiwari S, Singh AP, Tiwary BN, Shankar J (2015) Cytokines induce effector T-helper cells during invasive aspergillosis; what we have learned about T-helper cells? Front Microbiol. 6:429

    PubMed  PubMed Central  Google Scholar 

  46. Van Epps HL, Feldmesser M, Pamer EG (2003) Voriconazole inhibits fungal growth without impairing antigen presentation or T-cell activation. Antimicrob Agents Chemother 47:1818–1823

    PubMed  PubMed Central  Google Scholar 

  47. Tramsen L, Schmidt S, Koehl U, Huenecke S, Latge JP, Roeger F, Schubert R, Klingebiel T, Lehrnbecher T (2013) No effect of antifungal compounds on functional properties of human antifungal T-helper type 1 cells. Transpl Infect Dis 15:430–434

    CAS  PubMed  Google Scholar 

  48. Marr KA, Laverdiere M, Gugel A, Leisenring W (2005) Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immunoassay. Clin Infect Dis 40:1762–1769

    CAS  PubMed  Google Scholar 

  49. Reinwald M, Hummel M, Kovalevskaya E, Spiess B, Heinz WJ, Vehreschild JJ, Schultheis B, Krause SW, Claus B, Suedhoff T, Schwerdtfeger R, Reuter S, Kiehl MG, Hofmann WK, Buchheidt D (2012) Therapy with antifungals decreases the diagnostic performance of PCR for diagnosing invasive aspergillosis in bronchoalveolar lavage samples of patients with haematological malignancies. J Antimicrob Chemother 67:2260–2267

    CAS  PubMed  Google Scholar 

  50. Bellocchio S, Gaziano R, Bozza S, Rossi G, Montagnoli C, Perruccio K, Calvitti M, Pitzurra L, Romani L (2005) Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor ignaling from TLR-2 to TLR-4. J Antimicrob Chemother 55:214–222

    CAS  PubMed  Google Scholar 

  51. Hohl TM, Feldmesser M, Perlin DS, Pamer EG (2008) Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J Infect Dis 198:176–185

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Simitsopoulou M, Roilides E, Paliogianni F, Likartsis C, Ioannidis J, Kanellou K, Walsh TJ (2008) Immunomodulatory effects of voriconazole on monocytes challenged with Aspergillus fumigatus: differential role of Toll-like receptors. Antimicrob Agents Chemother 52:3301–3306

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Salvenmoser S, Seidler MJ, Dalpke A, Muller FM (2010) Effects of caspofungin, Candida albicans and Aspergillus fumigatus on toll-like receptor 9 of GM-CSF-stimulated PMNs. FEMS Immunol Med Microbiol 60:74–77

    CAS  PubMed  Google Scholar 

  54. Cramer RA, Rivera A, Hohl TM (2011) Immune responses against Aspergillus fumigatus: what have we learned? Curr Opin Infect Dis 24:315–322

    PubMed  PubMed Central  Google Scholar 

  55. Saxena S, Bhatnagar PK, Ghosh PC, Sarma PU (1999) Effect of amphotericin B lipid formulation on immune response in aspergillosis. Int J Pharm 188:19–30

    CAS  PubMed  Google Scholar 

  56. Becker MJ, de Marie S, Fens MH, Verbrugh HA, Bakker-Woudenberg IA (2003) Effect of amphotericin B treatment on kinetics of cytokines and parameters of fungal load in neutropenic rats with invasive pulmonary aspergillosis. J Antimicrob Chemother 52:428–434

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Interdisciplinary Centre for Clinical Research (IZKF) Wuerzburg (grant number Z-3/56, SW), by the “Deutsche Forschungsgemeinschaft” (Collaborative Research Center/Transregio 124 “Pathogenic fungi and their human host: Networks of interaction–FungiNet”; project A2 to HE and JL), and by the Bavarian Ministry of Economics, Media, Energy and Technology (grant number BayBIO-1606-003, “T-cell based diagnostic monitoring of invasive aspergillosis in haematological patients” to JL). We would like to thank Dr. Markus Kredel (University Hospital of Wuerzburg) for providing valuable feedback and critical discussion of our data.

Author information

Authors and Affiliations

Authors

Contributions

AJU, JL, and SW conceived and planned the experiments. LP, CDL, JH, PW, ML, and SW carried out the experiments. LP, CDL, PW, and SW analysed the data. LP and SW wrote the paper. HE contributed to project supervision and manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sebastian Wurster.

Ethics declarations

Conflict of interest

The authors have no conflict of interest related to this study.

Informed consent

Informed consent, approved by the ethics committee of the University of Wuerzburg (105/15 and 42/17), was obtained from all blood donors.

Additional information

Edited by Volkhard A. J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

430_2020_665_MOESM1_ESM.docx

Appendix 1. MIATA reporting modules according to http://miataproject.org. Appendix 2. Gating strategy for Fig. 4 and representative data set. Appendix 3. Approximation of the confidence intervals of antigen-specific T-cell frequencies (DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Page, L., Lauruschkat, C.D., Helm, J. et al. Impact of immunosuppressive and antifungal drugs on PBMC- and whole blood-based flow cytometric CD154+ Aspergillus fumigatus specific T-cell quantification. Med Microbiol Immunol 209, 579–592 (2020). https://doi.org/10.1007/s00430-020-00665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-020-00665-3

Keywords

Navigation