Skip to main content
Log in

Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone triggers mitochondrial dysfunction and apoptosis in neutrophils through calcium signaling

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that utilizes the quorum-sensing (QS) process to regulate the production of different virulence factors and biofilm. N-3-oxo-dodecanoyl-l-homoserine lactone (C12) is a key QS molecule of P. aeruginosa which interacts with the mammalian immune cells and modulates their function. Here, we investigated the molecular mechanism of C12-induced apoptosis in neutrophils. Our data show that C12 causes apoptosis in neutrophils through an elevation in cytosolic and mitochondrial Ca2+ levels. Besides, C12 induces phosphatidylserine (PS) exposure, mitochondrial membrane potential (MMP) depolarization, mitochondrial permeability transition pore (MPTP) formation and mitochondrial reactive oxygen species (mROS) generation. C12-induced rise in intracellular Ca2+ level is majorly contributed by endoplasmic reticulum store through the activation of inositol 1, 4, 5-triphosphate receptor. Intracellular calcium chelation inhibited C12-induced mitochondrial dysfunction and apoptosis. Further, inhibition of mitochondrial Ca2+ uniporter by ruthenium red or Ru360 abrogated C12-induced mitochondrial Ca2+ uptake, MMP loss, MPTP opening, mROS production, and PS exposure. These mechanistic insights are expected to provide a better understanding of the role of C12 in P. aeruginosa pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060. https://doi.org/10.1016/S1286-4579(00)01259-4

    Article  CAS  PubMed  Google Scholar 

  2. Winstanley C, O’Brien S, Brockhurst MA (2016) Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 24:327–337. https://doi.org/10.1016/j.tim.2016.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoiby N, Flensborg EW, Beck B et al (1977) Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scand J Respir Dis 58:65–79

    CAS  PubMed  Google Scholar 

  4. Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27:887–892

    Article  CAS  Google Scholar 

  5. Winstanley C, Fothergill JL (2009) The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290:1–9. https://doi.org/10.1111/j.1574-6968.2008.01394.x

    Article  CAS  PubMed  Google Scholar 

  6. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  7. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132. https://doi.org/10.1128/jb.179.10.3127-3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41. https://doi.org/10.1007/s13238-014-0100-x

    Article  CAS  PubMed  Google Scholar 

  9. Williams SC, Patterson EK, Carty NL et al (2004) Pseudomonas aeruginosa autoinducer enters and functions in mammalian cells. J Bacteriol 186:2281–2287. https://doi.org/10.1128/JB.186.8.2281-2287.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pacheco AR, Sperandio V (2009) Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 12:192–198. https://doi.org/10.1016/j.mib.2009.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davis BM, Jensen R, Williams P, O’Shea P (2010) The interaction of N-Acylhomoserine lactone quorum sensing signaling molecules with biological membranes: implications for inter-kingdom signaling. PLoS ONE 5:e13522. https://doi.org/10.1371/journal.pone.0013522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith RS, Fedyk ER, Springer TA et al (2001) IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF- B and activator protein-2. J Immunol 167:366–374. https://doi.org/10.4049/jimmunol.167.1.366

    Article  CAS  PubMed  Google Scholar 

  13. Jahoor A, Patel R, Bryan A et al (2008) Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer. J Bacteriol 190:4408–4415. https://doi.org/10.1128/JB.01444-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kravchenko VV, Kaufmann GF, Mathison JC et al (2008) Modulation of gene expression via disruption of NF-kappab signaling by a bacterial small molecule. Science 80(321):259–263. https://doi.org/10.1126/science.1156499

    Article  CAS  Google Scholar 

  15. Kravchenko VV, Kaufmann GF, Mathison JC et al (2006) N -(3-Oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways. J Biol Chem 281:28822–28830. https://doi.org/10.1074/jbc.M606613200

    Article  CAS  PubMed  Google Scholar 

  16. Hooi DSW, Bycroft BW, Chhabra SR et al (2004) differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 72:6463–6470. https://doi.org/10.1128/IAI.72.11.6463-6470.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yadav VK, Singh PK, Kalia M et al (2018) Pseudomonas aeruginosa quorum sensing molecule N-3-oxo-dodecanoyl-l-homoserine lactone activates human platelets through intracellular calcium-mediated ROS generation. Int J Med Microbiol 308:858–864. https://doi.org/10.1016/j.ijmm.2018.07.009

    Article  CAS  PubMed  Google Scholar 

  18. Karlsson T, Musse F, Magnusson K-E, Vikström E (2012) N -Acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling. J Leukoc Biol 91:15–26. https://doi.org/10.1189/jlb.0111034

    Article  CAS  PubMed  Google Scholar 

  19. Vikström E, Tafazoli F, Magnusson K-E (2006) Pseudomonas aeruginosa quorum sensing molecule N -(3 oxododecanoyl)- l -homoserine lactone disrupts epithelial barrier integrity of Caco-2 cells. FEBS Lett 580:6921–6928. https://doi.org/10.1016/j.febslet.2006.11.057

    Article  CAS  PubMed  Google Scholar 

  20. Vikström E, Bui L, Konradsson P, Magnusson K-E (2010) Role of calcium signalling and phosphorylations in disruption of the epithelial junctions by Pseudomonas aeruginosa quorum sensing molecule. Eur J Cell Biol 89:584–597. https://doi.org/10.1016/j.ejcb.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Wang L, Ye L et al (2009) Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells. Med Microbiol Immunol 198:113–121. https://doi.org/10.1007/s00430-009-0111-z

    Article  CAS  PubMed  Google Scholar 

  22. Schwarzer C, Fu Z, Patanwala M et al (2012) Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. Cell Microbiol 14:698–709. https://doi.org/10.1111/j.1462-5822.2012.01753.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwarzer C, Ravishankar B, Patanwala M et al (2014) Thapsigargin blocks Pseudomonas aeruginosa homoserine lactone-induced apoptosis in airway epithelia. Am J Physiol Physiol 306:C844–C855. https://doi.org/10.1152/ajpcell.00002.2014

    Article  CAS  Google Scholar 

  24. Shiner EK, Terentyev D, Bryan A et al (2006) Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol 8:1601–1610. https://doi.org/10.1111/j.1462-5822.2006.00734.x

    Article  CAS  PubMed  Google Scholar 

  25. Tateda K, Ishii Y, Horikawa M et al (2003) The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 71:5785–5793

    Article  CAS  Google Scholar 

  26. Witko-Sarsat V, Pederzoli-Ribeil M, Hirsh E et al (2011) Regulating neutrophil apoptosis: new players enter the game. Trends Immunol 32:117–124. https://doi.org/10.1016/j.it.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  27. Martin N, Bernard D (2018) Calcium signaling and cellular senescence. Cell Calcium 70:16–23. https://doi.org/10.1016/j.ceca.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Cao A, Li Q, Yin P et al (2013) Curcumin induces apoptosis in human gastric carcinoma AGS cells and colon carcinoma HT-29 cells through mitochondrial dysfunction and endoplasmic reticulum stress. Apoptosis 18:1391–1402. https://doi.org/10.1007/s10495-013-0871-1

    Article  CAS  PubMed  Google Scholar 

  29. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 4:552–565. https://doi.org/10.1038/nrm1150

    Article  CAS  Google Scholar 

  30. Hajnóczky G, Csordás G, Das S et al (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2 + uptake in apoptosis. Cell Calcium 40:553–560. https://doi.org/10.1016/j.ceca.2006.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwarzer C, Fu Z, Morita T et al (2015) Paraoxonase 2 serves a proapopotic function in mouse and human cells in response to the Pseudomonas aeruginosa quorum-sensing molecule N -(3-Oxododecanoyl)-homoserine lactone. J Biol Chem 290:7247–7258. https://doi.org/10.1074/jbc.M114.620039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shahzad T, Kasseckert SA, Iraqi W et al (2013) Mechanisms involved in postconditioning protection of cardiomyocytes against acute reperfusion injury. J Mol Cell Cardiol 58:209–216. https://doi.org/10.1016/j.yjmcc.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Z, Gordan R, Wen H et al (2013) Modulation of intracellular calcium waves and triggered activities by mitochondrial Ca flux in mouse cardiomyocytes. PLoS ONE 8:e80574. https://doi.org/10.1371/journal.pone.0080574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sedova M, Blatter LA (2000) Intracellular sodium modulates mitochondrial calcium signaling in vascular endothelial cells. J Biol Chem 275:35402–35407. https://doi.org/10.1074/jbc.M006058200

    Article  CAS  PubMed  Google Scholar 

  35. Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191. https://doi.org/10.1016/j.mib.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  36. Singh PK, Yadav VK, Kalia M et al (2017) Pseudomonas aeruginosa auto inducer 3-oxo-C 12 -HSL exerts bacteriostatic effect and inhibits Staphylococcus epidermidis biofilm. Microb Pathog 110:612–619. https://doi.org/10.1016/j.micpath.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  37. Qazi S, Middleton B, Muharram SH et al (2006) N-acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infect Immun 74:910–919. https://doi.org/10.1128/IAI.74.2.910-919.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun Y, Karmakar M, Taylor PR et al (2012) ExoS and ExoT ADP ribosyltransferase activities mediate Pseudomonas aeruginosa keratitis by promoting neutrophil apoptosis and bacterial survival. J Immunol 188:1884–1895. https://doi.org/10.4049/jimmunol.1102148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Usher LR, Lawson RA, Geary I et al (2002) Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168:1861–1868. https://doi.org/10.4049/jimmunol.168.4.1861

    Article  CAS  PubMed  Google Scholar 

  40. Allen L, Dockrell DH, Pattery T et al (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174:3643–3649. https://doi.org/10.4049/jimmunol.174.6.3643

    Article  CAS  PubMed  Google Scholar 

  41. Singh PK, Schaefer AL, Parsek MR et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764. https://doi.org/10.1038/35037627

    Article  CAS  PubMed  Google Scholar 

  42. Erickson DL (2002) Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70:1783–1790. https://doi.org/10.1128/IAI.70.4.1783-1790.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyairi S (2006) Immunization with 3-oxododecanoyl-L-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J Med Microbiol 55:1381–1387. https://doi.org/10.1099/jmm.0.46658-0

    Article  CAS  PubMed  Google Scholar 

  44. Pearson JP, Gray KM, Passador L et al (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci 91:197–201. https://doi.org/10.1073/pnas.91.1.197

    Article  CAS  PubMed  Google Scholar 

  45. Teplitski M, Mathesius U, Rumbaugh KP (2011) Perception and degradation of N-Acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111:100–116. https://doi.org/10.1021/cr100045m

    Article  CAS  PubMed  Google Scholar 

  46. Charlton TS, de Nys R, Netting A et al (2000) A novel and sensitive method for the quantification of N -3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541. https://doi.org/10.1046/j.1462-2920.2000.00136.x

    Article  CAS  PubMed  Google Scholar 

  47. Chambers CE, Visser MB, Schwab U, Sokol PA (2005) Identification of N -acylhomoserine lactones in mucopurulent respiratory secretions from cystic fibrosis patients. FEMS Microbiol Lett 244:297–304. https://doi.org/10.1016/j.femsle.2005.01.055

    Article  CAS  PubMed  Google Scholar 

  48. Teiber JF, Horke S, Haines DC et al (2008) Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-Oxododecanoyl)-L-homoserine lactone. Infect Immun 76:2512–2519. https://doi.org/10.1128/IAI.01606-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang F, Wang L-H, Wang J et al (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579:3713–3717. https://doi.org/10.1016/j.febslet.2005.05.060

    Article  CAS  PubMed  Google Scholar 

  50. Tao S, Luo Y, He Bin et al (2016) Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Sci Rep 6:28778. https://doi.org/10.1038/srep28778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith RS, Kelly R, Iglewski BH, Phipps RP (2002) The Pseudomonas autoinducer N-(3-Oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J Immunol 169:2636–2642. https://doi.org/10.4049/jimmunol.169.5.2636

    Article  CAS  PubMed  Google Scholar 

  52. Smith RS, Harris SG, Phipps R, Iglewski B (2002) The Pseudomonas aeruginosa quorum-sensing molecule N-(3-Oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184:1132–1139. https://doi.org/10.1128/jb.184.4.1132-1139.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. La Rovere RML, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca(2 +) signaling and Ca(2 +) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 60:74–87. https://doi.org/10.1016/j.ceca.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  54. Lee M-J, Kee K-H, Suh C-H et al (2009) Capsaicin-induced apoptosis is regulated by endoplasmic reticulum stress- and calpain-mediated mitochondrial cell death pathways. Toxicology 264:205–214. https://doi.org/10.1016/j.tox.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  55. Bagur R, Hajnóczky G (2017) Intracellular Ca 2 + sensing: its role in calcium homeostasis and signaling. Mol Cell 66:780–788. https://doi.org/10.1016/j.molcel.2017.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krebs J, Agellon LB, Michalak M (2015) Ca2 + homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun 460:114–121. https://doi.org/10.1016/j.bbrc.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  57. Bootman MD, Collins TJ, Mackenzie L et al (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2 + entry but an inconsistent inhibitor of InsP3-induced Ca2 + release. FASEB J 16:1145–1150. https://doi.org/10.1096/fj.02-0037rev

    Article  CAS  PubMed  Google Scholar 

  58. Yuan Z, Cao A, Liu H et al (2017) Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J Cell Biochem 118:2809–2818. https://doi.org/10.1002/jcb.25930

    Article  CAS  PubMed  Google Scholar 

  59. Rapizzi E, Pinton P, Szabadkai G et al (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca 2 + microdomains to mitochondria. J Cell Biol 159:613–624. https://doi.org/10.1083/jcb.200205091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364. https://doi.org/10.1038/nature02246

    Article  CAS  PubMed  Google Scholar 

  61. Baumgartner HK, Gerasimenko JV, Thorne C et al (2009) Calcium elevation in mitochondria is the main Ca 2 + requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803. https://doi.org/10.1074/jbc.M109.025353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Adam-Vizi V, Starkov AA (2010) Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J Alzheimer’s Dis 20:S413–S426. https://doi.org/10.3233/JAD-2010-100465

    Article  CAS  Google Scholar 

  63. Rizvi F, Heimann T, Herrnreiter A, O’Brien WJ (2011) Mitochondrial dysfunction links ceramide activated HRK expression and cell death. PLoS ONE 6:e18137. https://doi.org/10.1371/journal.pone.0018137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoppe UC (2010) Mitochondrial calcium channels. FEBS Lett 584:1975–1981. https://doi.org/10.1016/j.febslet.2010.04.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Grant from the Department of Biotechnology (DBT) Ministry of Science and Technology (BT/PR6175/GBD/27/367/2012); Science and Engineering Research Board (SERB) (EMR/2014/000496) Government of India. The authors gratefully acknowledge the University Grant Commission (UGC), and the Ministry of Human Resource Development (MHRD) for enabling fellowship. Authors are thankful to the Centre for Interdisciplinary Research (CIR), MNNIT Allahabad for providing the facility of the fluorescence spectrophotometer. Authors are also thankful to the Central Instrumentation Facility (CIF), Department of Biotechnology MNNIT Allahabad for providing the flow cytometry facility.

Author information

Authors and Affiliations

Authors

Contributions

PKS, VKY, and VA conceived and designed the experiments; PKS, VKY, and MK performed the experiments; PKS, VKY, VA, DP, and DS analyzed the data; VA provided comments and technical support; PKS, VKY, MK and VA wrote the paper.

Corresponding author

Correspondence to Vishnu Agarwal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Edited by: Volkhard A.J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Yadav, V.K., Kalia, M. et al. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone triggers mitochondrial dysfunction and apoptosis in neutrophils through calcium signaling. Med Microbiol Immunol 208, 855–868 (2019). https://doi.org/10.1007/s00430-019-00631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00631-8

Keywords

Navigation