Skip to main content

Advertisement

Log in

HTLV-1-infected asymptomatic carriers compared to HAM/TSP patients over-express the apoptosis- and cytotoxicity-related molecules

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

HTLV-1 infection causes a chronic progressive debilitating neuroinflammatory disease which is called, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the host defense mechanisms against viral infection is apoptosis which may control HTLV-1 infection. Therefore, we aimed to investigate this process and its interaction with viral factors in HTLV-1-infected asymptomatic carriers (ACs) compared to HAM/TSP patients. Fas, FasL, TRAIL, perforin, granzyme A, granzyme B, and granulysin gene expression and serum levels of Fas, FasL, TRAIL, and granulysin in the peripheral blood of 21 sex- and age-matched healthy controls (HCs), ACs, and HAM/TSP patients were evaluated. Also, the level of granulysin secretion in the cell culture supernatant was measured. Finally, the correlation of the expression of these molecules with HTLV-1 proviral load (PVL), Tax, and HBZ mRNA expression was analyzed. ACs compared to HAM/TSP patients significantly over-expressed the Fas, FasL, TRAIL, perforin, and granzyme B molecules. Fas, FasL, TRAIL, and granulysin serum levels were not different among studied groups; whereas, the secretion of granulysin was significantly decreased in ACs and HAM/TSP patients compared to HCs. Also, HAM/TSP patients expressed higher levels of HTLV-1 PVL, Tax, and HBZ mRNA. In addition, in ACs, inverse correlations between the Fas, FasL, TRAIL, perforin, granzyme B, and granulysin levels with HBZ mRNA expression were seen. ACs compared to HAM/TSP patients over-expressed the apoptosis- and cytotoxicity-related molecules. It could be concluded that successful control of the HTLV-1 infection and suppression of HAM/TSP development stem from the strong apoptosis and cytotoxic activity in the peripheral blood of ACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coffin JM (2015) The discovery of HTLV-1, the first pathogenic human retrovirus. Proc Natl Acad Sci USA 112(51):15525–15529

    Article  CAS  PubMed Central  Google Scholar 

  2. Gessain A, Cassar O (2012) Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol 3:388

    Article  PubMed Central  Google Scholar 

  3. Rafatpanah H et al (2011) High prevalence of HTLV-I infection in Mashhad, Northeast Iran: a population-based seroepidemiology survey. J Clin Virol 52(3):172–176

    Article  Google Scholar 

  4. Goncalves DU et al (2010) Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev 23(3):577–589

    Article  CAS  PubMed Central  Google Scholar 

  5. Matsuura E, Yamano Y, Jacobson S (2010) Neuroimmunity of HTLV-I infection. J Neuroimmune Pharmacol 5(3):310–325

    Article  PubMed Central  Google Scholar 

  6. Nagai M et al (1998) Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 4(6):586–593

    Article  CAS  PubMed Central  Google Scholar 

  7. Yamano Y et al (2002) Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood 99(1):88–94

    Article  CAS  PubMed Central  Google Scholar 

  8. Karimi M et al (2017) Role of the HTLV-1 viral factors in the induction of apoptosis. Biomed Pharmacother 85:334–347

    Article  CAS  PubMed Central  Google Scholar 

  9. Kattan T et al (2009) The avidity and lytic efficiency of the CTL response to HTLV-1. J Immunol 182(9):5723–5729

    Article  CAS  PubMed Central  Google Scholar 

  10. Sugata K et al (2015) Protective effect of cytotoxic T lymphocytes targeting HTLV-1 bZIP factor. Blood 126(9):1095–1105

    Article  CAS  PubMed Central  Google Scholar 

  11. Vine AM et al (2004) The role of CTLs in persistent viral infection: cytolytic gene expression in CD8+ lymphocytes distinguishes between individuals with a high or low proviral load of human T cell lymphotropic virus type 1. J Immunol 173(8):5121–5129

    Article  CAS  PubMed Central  Google Scholar 

  12. Mohammadi A et al (2017) Modulatory effects of curcumin on apoptosis and cytotoxicity-related molecules in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Biomed Pharmacother 85:457–462

    Article  CAS  PubMed Central  Google Scholar 

  13. Mozhgani SH et al (2018) Interferon lambda family along with HTLV-1 proviral load, tax, and HBZ implicated in the pathogenesis of myelopathy/tropical spastic paraparesis. Neurodegener Dis 18(2–3):150–155

    Article  CAS  PubMed Central  Google Scholar 

  14. Yaghouti N et al (2019) Role of receptors for advanced glycation end products and high-mobility group box 1 in the outcome of human T cell lymphotropic type 1 infection. Viral Immunol 32(2):89–94

    Article  CAS  PubMed Central  Google Scholar 

  15. Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2(6):401–409

    Article  CAS  Google Scholar 

  16. Waggoner SN et al (2016) Roles of natural killer cells in antiviral immunity. Curr Opin Virol 16:15–23

    Article  CAS  PubMed Central  Google Scholar 

  17. Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3(11):1013–1018

    Article  CAS  PubMed Central  Google Scholar 

  18. Abrams A, Akahata Y, Jacobson S (2011) The Prevalence and Significance of HTLV-I/II Seroindeterminate Western Blot Patterns. Viruses 3(8):1320

    Article  PubMed Central  Google Scholar 

  19. Thorstensson R, Albert J, Andersson S (2002) Strategies for diagnosis of HTLV-I and -II. Transfusion 42(6):780–791

    Article  CAS  Google Scholar 

  20. Ogawa K et al (2003) Granulysin in human serum as a marker of cell-mediated immunity. Eur J Immunol 33(7):1925–1933

    Article  CAS  PubMed Central  Google Scholar 

  21. Rafatpanah H et al (2012) The impact of interferon-alpha treatment on clinical and immunovirological aspects of HTLV-1-associated myelopathy in northeast of Iran. J Neuroimmunol 250(1–2):87–93

    Article  CAS  Google Scholar 

  22. Weinlich R, Brunner T, Amarante-Mendes GP (2010) Control of death receptor ligand activity by posttranslational modifications. Cell Mol Life Sci 67(10):1631–1642

    Article  CAS  PubMed Central  Google Scholar 

  23. Enose-Akahata Y, Vellucci A, Jacobson S (2017) Role of HTLV-1 tax and HBZ in the pathogenesis of HAM/TSP. Front Microbiol 8:2563

    Article  PubMed Central  Google Scholar 

  24. Saito M et al (2009) In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology 6:19

    Article  CAS  PubMed Central  Google Scholar 

  25. Tisato V et al (2016) Clinical perspectives of TRAIL: insights into central nervous system disorders. Cell Mol Life Sci 73(10):2017–2027

    Article  CAS  PubMed Central  Google Scholar 

  26. Hoffmann O, Zipp F, Weber JR (2009) Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in central nervous system inflammation. J Mol Med (Berl) 87(8):753–763

    Article  CAS  Google Scholar 

  27. Mc Guire C, Beyaert R, van Loo G (2011) Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci 34(12):619–628

    Article  CAS  PubMed Central  Google Scholar 

  28. Lettau M et al (2011) Insights into the molecular regulation of FasL (CD178) biology. Eur J Cell Biol 90(6–7):456–466

    Article  CAS  PubMed Central  Google Scholar 

  29. Sessler T et al (2013) Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 140(2):186–199

    Article  CAS  PubMed Central  Google Scholar 

  30. Cummins N, Badley A (2009) The TRAIL to viral pathogenesis: the good, the bad and the ugly. Curr Mol Med 9(4):495–505

    Article  CAS  PubMed Central  Google Scholar 

  31. Brincks EL et al (2008) CD8 T cells utilize TRAIL to control influenza virus infection. J Immunol 181(7):4918–4925

    Article  CAS  PubMed Central  Google Scholar 

  32. Inoue A et al (1997) Detection of the soluble form of the Fas molecule in patients with multiple sclerosis and human T-lymphotropic virus type I-associated myelopathy. J Neuroimmunol 75(1–2):141–146

    Article  CAS  PubMed Central  Google Scholar 

  33. Sakai T et al (1999) Serum levels of apoptosis-related molecules in patients with multiple sclerosis and human T-lymphotropic virus Type I-associated myelopathy. J Interferon Cytokine Res 19(9):999–1004

    Article  CAS  PubMed Central  Google Scholar 

  34. Saito M et al (1999) Increased levels of soluble Fas ligand in CSF of rapidly progressive HTLV-1-associated myelopathy/tropical spastic paraparesis patients. J Neuroimmunol 98(2):221–226

    Article  CAS  PubMed Central  Google Scholar 

  35. Sakamoto N et al (2004) Soluble form of Fas and Fas ligand in serum and bronchoalveolar lavage fluid of individuals infected with human T-lymphotropic virus type 1. Respir Med 98(3):213–219

    Article  PubMed Central  Google Scholar 

  36. Kawahigashi N et al (1998) Predominant expression of Fas ligand mRNA in CD8 + T lymphocytes in patients with HTLV-1 associated myelopathy. J Neuroimmunol 90(2):199–206

    Article  CAS  PubMed Central  Google Scholar 

  37. Umehara F et al (2002) Involvement of Fas/Fas ligand system in the spinal cords of HTLV-I-associated myelopathy. Acta Neuropathol 103(4):384–390

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the healthy controls and HTLV-1-infected individuals for their cooperation. This study was financially supported by Grants no: 910236 and 921985 from Mashhad University of Medical Sciences (MUMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Boostani or Houshang Rafatpanah.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Edited by: Roberto F. Speck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Fazeli, B., Poursina, Z. et al. HTLV-1-infected asymptomatic carriers compared to HAM/TSP patients over-express the apoptosis- and cytotoxicity-related molecules. Med Microbiol Immunol 208, 835–844 (2019). https://doi.org/10.1007/s00430-019-00625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00625-6

Keywords

Navigation