Skip to main content

Advertisement

Log in

Genetic variation and function of the HIV-1 Tat protein

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses’ representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rana TM, Jeang KT (1999) Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys 365(2):175–185. https://doi.org/10.1006/abbi.1999.1206

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Dahiya S, Kortagere S, Aiamkitsumrit B, Cunningham D, Pirrone V, Nonnemacher MR, Wigdahl B (2012) Impact of Tat genetic variation on HIV-1 disease. Adv Virol 2012:123605. https://doi.org/10.1155/2012/123605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gu J, Babayeva ND, Suwa Y, Baranovskiy AG, Price DH, Tahirov TH (2014) Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle 13(11):1788–1797. https://doi.org/10.4161/cc.28756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20(8):2629–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 274(41):28837–28840

    Article  CAS  PubMed  Google Scholar 

  6. Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehorn EA, Baumeister K et al (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313(6000):277–284

    Article  CAS  PubMed  Google Scholar 

  7. Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K, Chazal N, Arold ST, Pugniere M, Sanchez F, Bonhoure A, Briant L, Loret E, Roy C, Beaumelle B (2010) Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 29(8):1348–1362. https://doi.org/10.1038/emboj.2010.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koken SE, Greijer AE, Verhoef K, van Wamel J, Bukrinskaya AG, Berkhout B (1994) Intracellular analysis of in vitro modified HIV Tat protein. J Biol Chem 269(11):8366–8375

    CAS  PubMed  Google Scholar 

  9. Pierleoni R, Menotta M, Antonelli A, Sfara C, Serafini G, Dominici S, Laguardia ME, Salis A, Damonte G, Banci L, Porcu M, Monini P, Ensoli B, Magnani M (2010) Effect of the redox state on HIV-1 tat protein multimerization and cell internalization and trafficking. Mol Cell Biochem 345(1–2):105–118. https://doi.org/10.1007/s11010-010-0564-9

    Article  CAS  PubMed  Google Scholar 

  10. Ranga U, Shankarappa R, Siddappa NB, Ramakrishna L, Nagendran R, Mahalingam M, Mahadevan A, Jayasuryan N, Satishchandra P, Shankar SK, Prasad VR (2004) Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine. J Virol 78(5):2586–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92(4):451–462

    Article  CAS  PubMed  Google Scholar 

  12. Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 95(23):13519–13524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeang KT, Chun R, Lin NH, Gatignol A, Glabe CG, Fan H (1993) In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol 67(10):6224–6233

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hauber J, Malim MH, Cullen BR (1989) Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 63(3):1181–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mukerjee R, Sawaya BE, Khalili K, Amini S (2007) Association of p65 and C/EBPbeta with HIV-1 LTR modulates transcription of the viral promoter. J Cell Biochem 100(5):1210–1216. https://doi.org/10.1002/jcb.21109

    Article  CAS  PubMed  Google Scholar 

  16. Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine WA, Rosen CA (1989) Structural and functional characterization of human immunodeficiency virus tat protein. J Virol 63(1):1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  17. van der Kuyl AC, Vink M, Zorgdrager F, Bakker M, Wymant C, Hall M, Gall A, Blanquart F, Berkhout B, Fraser C, Cornelissen M, Collaboration B (2018) The evolution of subtype B HIV-1 tat in the Netherlands during 1985–2012. Virus Res 250:51–64. https://doi.org/10.1016/j.virusres.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  18. Neuveut C, Scoggins RM, Camerini D, Markham RB, Jeang KT (2003) Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J Biomed Sci 10(6 Pt 1):651–660. https://doi.org/10.1159/000073531

    Article  CAS  PubMed  Google Scholar 

  19. Kukkonen S, Martinez-Viedma Mdel P, Kim N, Manrique M, Aldovini A (2014) HIV-1 Tat second exon limits the extent of Tat-mediated modulation of interferon-stimulated genes in antigen presenting cells. Retrovirology 11:30. https://doi.org/10.1186/1742-4690-11-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopez-Huertas MR, Mateos E, Sanchez Del Cojo M, Gomez-Esquer F, Diaz-Gil G, Rodriguez-Mora S, Lopez JA, Calvo E, Lopez-Campos G, Alcami J, Coiras M (2013) The presence of HIV-1 Tat protein second exon delays fas protein-mediated apoptosis in CD4 + T lymphocytes: a potential mechanism for persistent viral production. J Biol Chem 288(11):7626–7644. https://doi.org/10.1074/jbc.M112.408294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aiamkitsumrit B, Dampier W, Martin-Garcia J, Nonnemacher MR, Pirrone V, Ivanova T, Zhong W, Kilareski E, Aldigun H, Frantz B, Rimbey M, Wojno A, Passic S, Williams JW, Shah S, Blakey B, Parikh N, Jacobson JM, Moldover B, Wigdahl B (2014) Defining differential genetic signatures in CXCR4- and the CCR5-utilizing HIV-1 co-linear sequences. PLoS One 9(9):e107389. https://doi.org/10.1371/journal.pone.0107389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiodelli P, Urbinati C, Mitola S, Tanghetti E, Rusnati M (2012) Sialic acid associated with alphavbeta3 integrin mediates HIV-1 Tat protein interaction and endothelial cell proangiogenic activation. J Biol Chem 287(24):20456–20466. https://doi.org/10.1074/jbc.M111.337139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Urbinati C, Mitola S, Tanghetti E, Kumar C, Waltenberger J, Ribatti D, Presta M, Rusnati M (2005) Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 25(11):2315–2320. https://doi.org/10.1161/01.ATV.0000186182.14908.7b

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Huertas MR, Callejas S, Abia D, Mateos E, Dopazo A, Alcami J, Coiras M (2010) Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res 38(10):3287–3307. https://doi.org/10.1093/nar/gkq037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Canducci F, Marinozzi MC, Sampaolo M, Berre S, Bagnarelli P, Degano M, Gallotta G, Mazzi B, Lemey P, Burioni R, Clementi M (2009) Dynamic features of the selective pressure on the human immunodeficiency virus type 1 (HIV-1) gp120 CD4-binding site in a group of long term non progressor (LTNP) subjects. Retrovirology 6:4. https://doi.org/10.1186/1742-4690-6-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rhee SY, Fessel WJ, Zolopa AR, Hurley L, Liu T, Taylor J, Nguyen DP, Slome S, Klein D, Horberg M, Flamm J, Follansbee S, Schapiro JM, Shafer RW (2005) HIV-1 Protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J Infect Dis 192(3):456–465. https://doi.org/10.1086/431601

    Article  CAS  PubMed  Google Scholar 

  27. Dampier W, Nonnemacher MR, Mell J, Earl J, Ehrlich GD, Pirrone V, Aiamkitsumrit B, Zhong W, Kercher K, Passic S, Williams JW, Jacobson JM, Wigdahl B (2016) HIV-1 genetic variation resulting in the development of new quasispecies continues to be encountered in the peripheral blood of well-suppressed patients. PLoS One 11(5):e0155382. https://doi.org/10.1371/journal.pone.0155382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roy CN, Khandaker I, Oshitani H (2015) Intersubtype genetic variation of HIV-1 Tat Exon 1. AIDS Res Hum Retroviruses 31(6):641–648. https://doi.org/10.1089/AID.2014.0346

    Article  CAS  PubMed  Google Scholar 

  29. Roy CN, Khandaker I, Oshitani H (2015) Evolutionary dynamics of Tat in HIV-1 subtypes B and C. PLoS One 10(6):e0129896. https://doi.org/10.1371/journal.pone.0129896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li L, Aiamkitsumrit B, Pirrone V, Nonnemacher MR, Wojno A, Passic S, Flaig K, Kilareski E, Blakey B, Ku J, Parikh N, Shah R, Martin-Garcia J, Moldover B, Servance L, Downie D, Lewis S, Jacobson JM, Kolson D, Wigdahl B (2011) Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment. J Neurovirol 17(1):92–109. https://doi.org/10.1007/s13365-010-0014-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Li J, Kim BO, Pace BS, He JJ (2002) HIV-1 Tat protein-mediated transactivation of the HIV-1 long terminal repeat promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J Biol Chem 277(26):23854–23863. https://doi.org/10.1074/jbc.M200773200

    Article  CAS  PubMed  Google Scholar 

  32. Rossenkhan R, MacLeod IJ, Sebunya TK, Castro-Nallar E, McLane MF, Musonda R, Gashe BA, Novitsky V, Essex M (2013) tat Exon 1 exhibits functional diversity during HIV-1 subtype C primary infection. J Virol 87(10):5732–5745. https://doi.org/10.1128/JVI.03297-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Campbell GR, Loret EP, Spector SA (2010) HIV-1 clade B Tat, but not clade C Tat, increases X4 HIV-1 entry into resting but not activated CD4 + T cells. J Biol Chem 285(3):1681–1691. https://doi.org/10.1074/jbc.M109.049957

    Article  CAS  PubMed  Google Scholar 

  34. Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63(3):366–376. https://doi.org/10.1002/ana.21292

    Article  CAS  PubMed  Google Scholar 

  35. Tyor W, Fritz-French C, Nath A (2013) Effect of HIV clade differences on the onset and severity of HIV-associated neurocognitive disorders. J Neurovirol 19(6):515–522. https://doi.org/10.1007/s13365-013-0206-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shah S, Alexaki A, Pirrone V, Dahiya S, Nonnemacher MR, Wigdahl B (2014) Functional properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp site III and CCAAT/enhancer binding protein site I. Virol J 11:92. https://doi.org/10.1186/1743-422X-11-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B (2009) Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 6:118. https://doi.org/10.1186/1742-4690-6-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burdo TH, Nonnemacher M, Irish BP, Choi CH, Krebs FC, Gartner S, Wigdahl B (2004) High-affinity interaction between HIV-1 Vpr and specific sequences that span the C/EBP and adjacent NF-kappaB sites within the HIV-1 LTR correlate with HIV-1-associated dementia. DNA Cell Biol 23(4):261–269. https://doi.org/10.1089/104454904773819842

    Article  CAS  PubMed  Google Scholar 

  39. Maubert ME, Pirrone V, Rivera NT, Wigdahl B, Nonnemacher MR (2015) Interaction between Tat and drugs of abuse during HIV-1 infection and central nervous system disease. Front Microbiol 6:1512. https://doi.org/10.3389/fmicb.2015.01512

    Article  PubMed  Google Scholar 

  40. Clifford DB (2017) HIV-associated neurocognitive disorder. Curr Opin Infect Dis 30(1):117–122. https://doi.org/10.1097/QCO.0000000000000328

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410(6831):988–994. https://doi.org/10.1038/35073667

    Article  CAS  PubMed  Google Scholar 

  42. Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B (2013) Genetic variation and HIV-associated neurologic disease. Adv Virus Res 87:183–240. https://doi.org/10.1016/B978-0-12-407698-3.00006-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74(2):255–265. https://doi.org/10.1002/jnr.10762

    Article  CAS  PubMed  Google Scholar 

  44. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AE, Alouani S, Wells TN, Mariani G, Rabin RL, Farber JM, Noonan DM (1998) HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 95(22):13153–13158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pu H, Tian J, Flora G, Lee YW, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci 24(1):224–237

    Article  CAS  PubMed  Google Scholar 

  46. Agrawal L, Louboutin JP, Reyes BA, Van Bockstaele EJ, Strayer DS (2012) HIV-1 Tat neurotoxicity: a model of acute and chronic exposure, and neuroprotection by gene delivery of antioxidant enzymes. Neurobiol Dis 45(2):657–670. https://doi.org/10.1016/j.nbd.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  47. Badou A, Bennasser Y, Moreau M, Leclerc C, Benkirane M, Bahraoui E (2000) Tat protein of human immunodeficiency virus type 1 induces interleukin-10 in human peripheral blood monocytes: implication of protein kinase C-dependent pathway. J Virol 74(22):10551–10562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brady J, Kashanchi F (2005) Tat gets the “green” light on transcription initiation. Retrovirology 2:69. https://doi.org/10.1186/1742-4690-2-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cullen BR (1991) Regulation of HIV-1 gene expression. FASEB J 5(10):2361–2368

    Article  CAS  PubMed  Google Scholar 

  50. Feinberg MB, Baltimore D, Frankel AD (1991) The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci USA 88(9):4045–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Purcell DF, Martin MA (1993) Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67(11):6365–6378

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Truant R, Cullen BR (1999) The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19(2):1210–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Efthymiadis A, Briggs LJ, Jans DA (1998) The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 273(3):1623–1628

    Article  CAS  PubMed  Google Scholar 

  54. Cardarelli F, Serresi M, Bizzarri R, Beltram F (2008) Tuning the transport properties of HIV-1 Tat arginine-rich motif in living cells. Traffic 9(4):528–539. https://doi.org/10.1111/j.1600-0854.2007.00696.x

    Article  CAS  PubMed  Google Scholar 

  55. Smith KM, Himiari Z, Tsimbalyuk S, Forwood JK (2017) Structural Basis for Importin-alpha Binding of the Human Immunodeficiency Virus Tat. Sci Rep 7(1):1650. https://doi.org/10.1038/s41598-017-01853-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bres V, Kiernan R, Emiliani S, Benkirane M (2002) Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J Biol Chem 277(25):22215–22221. https://doi.org/10.1074/jbc.M201895200

    Article  CAS  PubMed  Google Scholar 

  57. Fulcher AJ, Sivakumaran H, Jin H, Rawle DJ, Harrich D, Jans DA (2016) The protein arginine methyltransferase PRMT6 inhibits HIV-1 Tat nucleolar retention. Biochim Biophys Acta 1863(2):254–262. https://doi.org/10.1016/j.bbamcr.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  58. Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17(9):3551–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Orsini MJ, Debouck CM (1996) Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol 70(11):8055–8063

    CAS  PubMed  PubMed Central  Google Scholar 

  60. He M, Zhang L, Wang X, Huo L, Sun L, Feng C, Jing X, Du D, Liang H, Liu M, Hong Z, Zhou J (2013) Systematic analysis of the functions of lysine acetylation in the regulation of Tat activity. PLoS One 8(6):e67186. https://doi.org/10.1371/journal.pone.0067186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ott M, Schnolzer M, Garnica J, Fischle W, Emiliani S, Rackwitz HR, Verdin E (1999) Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol 9(24):1489–1492

    Article  CAS  PubMed  Google Scholar 

  62. D’Orso I, Frankel AD (2009) Tat acetylation modulates assembly of a viral-host RNA-protein transcription complex. Proc Natl Acad Sci USA 106(9):3101–3106. https://doi.org/10.1073/pnas.0900012106

    Article  PubMed  PubMed Central  Google Scholar 

  63. Grisendi S, Mecucci C, Falini B, Pandolfi PP (2006) Nucleophosmin and cancer. Nat Rev Cancer 6(7):493–505. https://doi.org/10.1038/nrc1885

    Article  CAS  PubMed  Google Scholar 

  64. Li YP (1997) Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71(5):4098–4102

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Marasco WA, Szilvay AM, Kalland KH, Helland DG, Reyes HM, Walter RJ (1994) Spatial association of HIV-1 tat protein and the nucleolar transport protein B23 in stably transfected Jurkat T-cells. Arch Virol 139(1–2):133–154

    Article  CAS  PubMed  Google Scholar 

  66. Gadad SS, Rajan RE, Senapati P, Chatterjee S, Shandilya J, Dash PK, Ranga U, Kundu TK (2011) HIV-1 infection induces acetylation of NPM1 that facilitates Tat localization and enhances viral transactivation. J Mol Biol 410(5):997–1007. https://doi.org/10.1016/j.jmb.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  67. Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA, Richard S (2005) Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol 79(1):124–131. https://doi.org/10.1128/JVI.79.1.124-131.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xie B, Invernizzi CF, Richard S, Wainberg MA (2007) Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat interactions with both cyclin T1 and the Tat transactivation region. J Virol 81(8):4226–4234. https://doi.org/10.1128/JVI.01888-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277(5):3537–3543. https://doi.org/10.1074/jbc.M108786200

    Article  CAS  PubMed  Google Scholar 

  70. Yoon CH, Kim SY, Byeon SE, Jeong Y, Lee J, Kim KP, Park J, Bae YS (2015) p53-derived host restriction of HIV-1 replication by protein kinase R-mediated Tat phosphorylation and inactivation. J Virol 89(8):4262–4280. https://doi.org/10.1128/JVI.03087-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1(3):415–431. https://doi.org/10.1002/wrna.39

    Article  CAS  PubMed  Google Scholar 

  72. Ponti D, Troiano M, Bellenchi GC, Battaglia PA, Gigliani F (2008) The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol 9:32. https://doi.org/10.1186/1471-2121-9-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jarboui MA, Bidoia C, Woods E, Roe B, Wynne K, Elia G, Hall WW, Gautier VW (2012) Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS One 7(11):e48702. https://doi.org/10.1371/journal.pone.0048702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745. https://doi.org/10.1016/j.cell.2009.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schneider RJ, Shenk T (1987) Impact of virus infection on host cell protein synthesis. Annu Rev Biochem 56:317–332. https://doi.org/10.1146/annurev.bi.56.070187.001533

    Article  CAS  PubMed  Google Scholar 

  76. Bushell M, Sarnow P (2002) Hijacking the translation apparatus by RNA viruses. J Cell Biol 158(3):395–399. https://doi.org/10.1083/jcb.200205044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Debaisieux S, Rayne F, Yezid H, Beaumelle B (2012) The ins and outs of HIV-1 Tat. Traffic 13(3):355–363. https://doi.org/10.1111/j.1600-0854.2011.01286.x

    Article  CAS  PubMed  Google Scholar 

  78. Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15(5):2347–2360. https://doi.org/10.1091/mbc.E03-12-0921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yezid H, Konate K, Debaisieux S, Bonhoure A, Beaumelle B (2009) Mechanism for HIV-1 Tat insertion into the endosome membrane. J Biol Chem 284(34):22736–22746. https://doi.org/10.1074/jbc.M109.023705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pantano S, Tyagi M, Giacca M, Carloni P (2002) Amino acid modification in the HIV-1 Tat basic domain: insights from molecular dynamics and in vivo functional studies. J Mol Biol 318(5):1331–1339

    Article  CAS  PubMed  Google Scholar 

  81. Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276(5):3254–3261. https://doi.org/10.1074/jbc.M006701200

    Article  CAS  PubMed  Google Scholar 

  82. Mere J, Morlon-Guyot J, Bonhoure A, Chiche L, Beaumelle B (2005) Acid-triggered membrane insertion of Pseudomonas exotoxin A involves an original mechanism based on pH-regulated tryptophan exposure. J Biol Chem 280(22):21194–21201. https://doi.org/10.1074/jbc.M412656200

    Article  CAS  PubMed  Google Scholar 

  83. De Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6(6):487–492. https://doi.org/10.1038/ncb0604-487

    Article  CAS  PubMed  Google Scholar 

  84. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657. https://doi.org/10.1038/nature05185

    Article  CAS  PubMed  Google Scholar 

  85. Boven LA, Noorbakhsh F, Bouma G, van der Zee R, Vargas DL, Pardo C, McArthur JC, Nottet HS, Power C (2007) Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 13(2):173–184. https://doi.org/10.1080/13550280701258399

    Article  CAS  PubMed  Google Scholar 

  86. Cowley D, Gray LR, Wesselingh SL, Gorry PR, Churchill MJ (2011) Genetic and functional heterogeneity of CNS-derived tat alleles from patients with HIV-associated dementia. J Neurovirol 17(1):70–81. https://doi.org/10.1007/s13365-010-0002-5

    Article  CAS  PubMed  Google Scholar 

  87. Roof P, Ricci M, Genin P, Montano MA, Essex M, Wainberg MA, Gatignol A, Hiscott J (2002) Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. Virology 296(1):77–83. https://doi.org/10.1006/viro.2001.1397

    Article  CAS  PubMed  Google Scholar 

  88. Dahiya S, Nonnemacher MR, Wigdahl B (2012) Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol 93(Pt 6):1151–1172. https://doi.org/10.1099/vir.0.041186-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Taylor JP, Pomerantz R, Bagasra O, Chowdhury M, Rappaport J, Khalili K, Amini S (1992) TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation. EMBO J 11(9):3395–3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hetzer C, Dormeyer W, Schnolzer M, Ott M (2005) Decoding Tat: the biology of HIV Tat posttranslational modifications. Microbes Infect 7(13):1364–1369. https://doi.org/10.1016/j.micinf.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  91. Deng L, Ammosova T, Pumfery A, Kashanchi F, Nekhai S (2002) HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter. J Biol Chem 277(37):33922–33929. https://doi.org/10.1074/jbc.M111349200

    Article  CAS  PubMed  Google Scholar 

  92. Ammosova T, Berro R, Jerebtsova M, Jackson A, Charles S, Klase Z, Southerland W, Gordeuk VR, Kashanchi F, Nekhai S (2006) Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology 3:78. https://doi.org/10.1186/1742-4690-3-78

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ivanov A, Lin X, Ammosova T, Ilatovskiy AV, Kumari N, Lassiter H, Afangbedji N, Niu X, Petukhov MG, Nekhai S (2018) HIV-1 Tat phosphorylation on Ser-16 residue modulates HIV-1 transcription. Retrovirology 15(1):39. https://doi.org/10.1186/s12977-018-0422-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stevenson-Lindert LM, Fowler P, Lew J (2003) Substrate specificity of CDK2-cyclin A. What is optimal? J Biol Chem 278(51):50956–50960. https://doi.org/10.1074/jbc.M306546200

    Article  CAS  PubMed  Google Scholar 

  95. Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato J, Segawa K, Yoshida E, Nishimura S, Taya Y (1996) The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 15(24):7060–7069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Selhorst P, Combrinck C, Ndabambi N, Ismail SD, Abrahams MR, Lacerda M, Samsunder N, Garrett N, Abdool Karim Q, Abdool Karim SS, Williamson C (2017) Replication capacity of viruses from acute infection drives HIV-1 disease progression. J Virol. https://doi.org/10.1128/JVI.01806-16

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tyagi S, Ochem A, Tyagi M (2011) DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression. J Gen Virol 92(Pt 7):1710–1720. https://doi.org/10.1099/vir.0.029587-0

    Article  CAS  PubMed  Google Scholar 

  98. McMillan NA, Chun RF, Siderovski DP, Galabru J, Toone WM, Samuel CE, Mak TW, Hovanessian AG, Jeang KT, Williams BR (1995) HIV-1 Tat directly interacts with the interferon-induced, double-stranded RNA-dependent kinase. PKR Virol 213(2):413–424. https://doi.org/10.1006/viro.1995.0014

    Article  CAS  Google Scholar 

  99. Brand SR, Kobayashi R, Mathews MB (1997) The Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase, PKR. J Biol Chem 272(13):8388–8395

    Article  CAS  PubMed  Google Scholar 

  100. Garcia MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70(4):1032–1060. https://doi.org/10.1128/MMBR.00027-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Krishna KH, Vadlamudi Y, Kumar MS (2016) Viral evolved inhibition mechanism of the RNA Dependent protein kinase PKR’s kinase domain, a structural perspective. PLoS One 11(4):e0153680. https://doi.org/10.1371/journal.pone.0153680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Campbell GR, Loret EP (2009) What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS Vaccine?. Retrovirology 6:50. https://doi.org/10.1186/1742-4690-6-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Endo-Munoz L, Warby T, Harrich D, McMillan NA (2005) Phosphorylation of HIV Tat by PKR increases interaction with TAR RNA and enhances transcription. Virol J 2:17. https://doi.org/10.1186/1743-422X-2-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee CG, Kashanchi F (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277(2):278–295. https://doi.org/10.1006/viro.2000.0593

    Article  CAS  PubMed  Google Scholar 

  105. Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18(21):6106–6118. https://doi.org/10.1093/emboj/18.21.6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dorr A, Kiermer V, Pedal A, Rackwitz HR, Henklein P, Schubert U, Zhou MM, Verdin E, Ott M (2002) Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO J 21(11):2715–2723. https://doi.org/10.1093/emboj/21.11.2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bres V, Tagami H, Peloponese JM, Loret E, Jeang KT, Nakatani Y, Emiliani S, Benkirane M, Kiernan RE (2002) Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 21(24):6811–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Col E, Caron C, Seigneurin-Berny D, Gracia J, Favier A, Khochbin S (2001) The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem 276(30):28179–28184. https://doi.org/10.1074/jbc.M101385200

    Article  CAS  PubMed  Google Scholar 

  109. Kaehlcke K, Dorr A, Hetzer-Egger C, Kiermer V, Henklein P, Schnoelzer M, Loret E, Cole PA, Verdin E, Ott M (2003) Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol Cell 12(1):167–176

    Article  PubMed  Google Scholar 

  110. Mujtaba S, He Y, Zeng L, Farooq A, Carlson JE, Ott M, Verdin E, Zhou MM (2002) Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 9(3):575–586

    Article  CAS  PubMed  Google Scholar 

  111. Agbottah E, Deng L, Dannenberg LO, Pumfery A, Kashanchi F (2006) Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Retrovirology 3:48. https://doi.org/10.1186/1742-4690-3-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tang L, Nogales E, Ciferri C (2010) Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol 102(2–3):122–128. https://doi.org/10.1016/j.pbiomolbio.2010.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Verdin E, Paras P, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12(8):3249–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pagans S, Kauder SE, Kaehlcke K, Sakane N, Schroeder S, Dormeyer W, Trievel RC, Verdin E, Schnolzer M, Ott M (2010) The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 7(3):234–244. https://doi.org/10.1016/j.chom.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ali I, Ramage H, Boehm D, Dirk LM, Sakane N, Hanada K, Pagans S, Kaehlcke K, Aull K, Weinberger L, Trievel R, Schnoelzer M, Kamada M, Houtz R, Ott M (2016) The HIV-1 Tat protein is monomethylated at lysine 71 by the lysine methyltransferase KMT7. J Biol Chem 291(31):16240–16248. https://doi.org/10.1074/jbc.M116.735415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Duyne R, Easley R, Wu W, Berro R, Pedati C, Klase Z, Kehn-Hall K, Flynn EK, Symer DE, Kashanchi F (2008) Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 5:40. https://doi.org/10.1186/1742-4690-5-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio 6(4):e00465. https://doi.org/10.1128/mBio.00465-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20(4):425–429. https://doi.org/10.1038/nm.3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rasmussen TA, Lewin SR (2016) Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS 11(4):394–401. https://doi.org/10.1097/COH.0000000000000279

    Article  CAS  PubMed  Google Scholar 

  120. Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W (2008) TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog 4(2):e16. https://doi.org/10.1371/journal.ppat.0040016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B, Konig R, Fackler OT, Keppler OT (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18(11):1682–1687. https://doi.org/10.1038/nm.2964

    Article  CAS  PubMed  Google Scholar 

  122. Bres V, Kiernan RE, Linares LK, Chable-Bessia C, Plechakova O, Treand C, Emiliani S, Peloponese JM, Jeang KT, Coux O, Scheffner M, Benkirane M (2003) A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat Cell Biol 5(8):754–761. https://doi.org/10.1038/ncb1023

    Article  CAS  PubMed  Google Scholar 

  123. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008

    CAS  PubMed  Google Scholar 

  124. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV, Safiran YJ, Oberoi P, Kenten JH, Phillips AC, Weissman AM, Vousden KH (2005) Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7(6):547–559. https://doi.org/10.1016/j.ccr.2005.04.029

    Article  CAS  PubMed  Google Scholar 

  125. Garber ME, Wei P, KewalRamani VN, Mayall TP, Herrmann CH, Rice AP, Littman DR, Jones KA (1998) The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12(22):3512–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Faust TB, Li Y, Jang GM, Johnson JR, Yang S, Weiss A, Krogan NJ, Frankel AD (2017) PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription. Sci Rep 7:45394. https://doi.org/10.1038/srep45394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. El Kharroubi A, Piras G, Zensen R, Martin MA (1998) Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol Cell Biol 18(5):2535–2544

    Article  PubMed  PubMed Central  Google Scholar 

  128. D’Orso I, Jang GM, Pastuszak AW, Faust TB, Quezada E, Booth DS, Frankel AD (2012) Transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. Mol Cell Biol 32(23):4780–4793. https://doi.org/10.1128/MCB.00206-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garcia JA, Harrich D, Pearson L, Mitsuyasu R, Gaynor RB (1988) Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J 7(10):3143–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sadaie MR, Mukhopadhyaya R, Benaissa ZN, Pavlakis GN, Wong-Staal F (1990) Conservative mutations in the putative metal-binding region of human immunodeficiency virus tat disrupt virus replication. AIDS Res Hum Retroviruses 6(11):1257–1263. https://doi.org/10.1089/aid.1990.6.1257

    Article  CAS  PubMed  Google Scholar 

  131. Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH (2010) Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465(7299):747–751. https://doi.org/10.1038/nature09131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rice AP, Carlotti F (1990) Mutational analysis of the conserved cysteine-rich region of the human immunodeficiency virus type 1 Tat protein. J Virol 64(4):1864–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Reza SM, Rosetti M, Mathews MB, Pe’ery T (2003) Differential activation of Tat variants in mitogen-stimulated cells: implications for HIV-1 postintegration latency. Virology 310(1):141–156

    Article  CAS  PubMed  Google Scholar 

  134. Huet T, Dazza MC, Brun-Vezinet F, Roelants GE, Wain-Hobson S (1989) A highly defective HIV-1 strain isolated from a healthy Gabonese individual presenting an atypical western blot. AIDS 3(11):707–715

    Article  CAS  PubMed  Google Scholar 

  135. Pantano S, Tyagi M, Giacca M, Carloni P (2004) Molecular dynamics simulations on HIV-1 Tat. Eur Biophys J 33(4):344–351. https://doi.org/10.1007/s00249-003-0358-z

    Article  CAS  PubMed  Google Scholar 

  136. Mele AR, Marino J, Chen K, Pirrone V, Janetopoulos C, Wigdahl B, Klase Z, Nonnemacher MR (2018) Defining the molecular mechanisms of HIV-1 Tat secretion: PtdIns(4,5)P2 at the epicenter. Traffic. https://doi.org/10.1111/tra.12578

    Article  PubMed  PubMed Central  Google Scholar 

  137. Paul RH, Joska JA, Woods C, Seedat S, Engelbrecht S, Hoare J, Heaps J, Valcour V, Ances B, Baker LM, Salminen LE, Stein DJ (2014) Impact of the HIV Tat C30C31S dicysteine substitution on neuropsychological function in patients with clade C disease. J Neurovirol 20(6):627–635. https://doi.org/10.1007/s13365-014-0293-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Berkhout B, Gatignol A, Rabson AB, Jeang KT (1990) TAR-independent activation of the HIV-1 LTR: evidence that tat requires specific regions of the promoter. Cell 62(4):757–767

    Article  CAS  PubMed  Google Scholar 

  139. Harrich D, Garcia J, Mitsuyasu R, Gaynor R (1990) TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes. EMBO J 9(13):4417–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Southgate CD, Green MR (1991) The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: implications for Tat function. Genes Dev 5(12B):2496–2507

    Article  CAS  PubMed  Google Scholar 

  141. Verhoef K, Koper M, Berkhout B (1997) Determination of the minimal amount of Tat activity required for human immunodeficiency virus type 1 replication. Virology 237(2):228–236. https://doi.org/10.1006/viro.1997.8786

    Article  CAS  PubMed  Google Scholar 

  142. Das AT, Harwig A, Berkhout B (2011) The HIV-1 Tat protein has a versatile role in activating viral transcription. J Virol 85(18):9506–9516. https://doi.org/10.1128/JVI.00650-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dandekar DH, Ganesh KN, Mitra D (2004) HIV-1 Tat directly binds to NFkappaB enhancer sequence: role in viral and cellular gene expression. Nucleic Acids Res 32(4):1270–1278. https://doi.org/10.1093/nar/gkh289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Antell GC, Dampier W, Aiamkitsumrit B, Nonnemacher MR, Jacobson JM, Pirrone V, Zhong W, Kercher K, Passic S, Williams JW, Schwartz G, Hershberg U, Krebs FC, Wigdahl B (2016) Utilization of HIV-1 envelope V3 to identify X4- and R5-specific Tat and LTR sequence signatures. Retrovirology 13(1):32. https://doi.org/10.1186/s12977-016-0266-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611. https://doi.org/10.1371/journal.pone.0010611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Das AT, Harwig A, Vrolijk MM, Berkhout B (2007) The TAR hairpin of human immunodeficiency virus type 1 can be deleted when not required for Tat-mediated activation of transcription. J Virol 81(14):7742–7748. https://doi.org/10.1128/JVI.00392-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Marzio G, Verhoef K, Vink M, Berkhout B (2001) In vitro evolution of a highly replicating, doxycycline-dependent HIV for applications in vaccine studies. Proc Natl Acad Sci USA 98(11):6342–6347. https://doi.org/10.1073/pnas.111031498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Das AT, Verhoef K, Berkhout B (2004) A conditionally replicating virus as a novel approach toward an HIV vaccine. Methods Enzymol 388:359–379. https://doi.org/10.1016/S0076-6879(04)88028-5

    Article  CAS  PubMed  Google Scholar 

  149. Mahlknecht U, Dichamp I, Varin A, Van Lint C, Herbein G (2008) NF-kappaB-dependent control of HIV-1 transcription by the second coding exon of Tat in T cells. J Leukoc Biol 83(3):718–727. https://doi.org/10.1189/jlb.0607405

    Article  CAS  PubMed  Google Scholar 

  150. Yang L, Morris GF, Lockyer JM, Lu M, Wang Z, Morris CB (1997) Distinct transcriptional pathways of TAR-dependent and TAR-independent human immunodeficiency virus type-1 transactivation by Tat. Virology 235(1):48–64. https://doi.org/10.1006/viro.1997.8672

    Article  CAS  PubMed  Google Scholar 

  151. Taylor JP, Pomerantz RJ, Raj GV, Kashanchi F, Brady JN, Amini S, Khalili K (1994) Central nervous system-derived cells express a kappa B-binding activity that enhances human immunodeficiency virus type 1 transcription in vitro and facilitates TAR-independent transactivation by Tat. J Virol 68(6):3971–3981

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gendelman HE, Lipton SA, Tardieu M, Bukrinsky MI, Nottet HS (1994) The neuropathogenesis of HIV-1 infection. J Leukoc Biol 56(3):389–398

    Article  CAS  PubMed  Google Scholar 

  153. Zhou L, Saksena NK (2013) HIV Associated Neurocognitive Disorders. Infect Dis Rep 5(Suppl 1):e8. https://doi.org/10.4081/idr.2013.s1.e8

    Article  PubMed  PubMed Central  Google Scholar 

  154. Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin I, Schiffer V, Calmy A, Chave JP, Giacobini E, Hirschel B, Du Pasquier RA (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24(9):1243–1250. https://doi.org/10.1097/QAD.0b013e3283354a7b

    Article  PubMed  Google Scholar 

  155. Purvis SF, Jacobberger JW, Sramkoski RM, Patki AH, Lederman MM (1995) HIV type 1 Tat protein induces apoptosis and death in Jurkat cells. AIDS Res Hum Retroviruses 11(4):443–450. https://doi.org/10.1089/aid.1995.11.443

    Article  CAS  PubMed  Google Scholar 

  156. Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2009) Attenuated neurotoxicity of the transactivation-defective HIV-1 Tat protein in hippocampal cell cultures. Exp Neurol 219(2):586–590. https://doi.org/10.1016/j.expneurol.2009.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. McCloskey TW, Ott M, Tribble E, Khan SA, Teichberg S, Paul MO, Pahwa S, Verdin E, Chirmule N (1997) Dual role of HIV Tat in regulation of apoptosis in T cells. J Immunol 158(2):1014–1019

    CAS  PubMed  Google Scholar 

  158. Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154(2):276–288. https://doi.org/10.1006/exnr.1998.6958

    Article  CAS  PubMed  Google Scholar 

  159. Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB (1995) Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268(5209):429–431

    Article  CAS  PubMed  Google Scholar 

  160. Pantaleo G, Fauci AS (1995) Apoptosis in HIV infection. Nat Med 1(2):118–120

    Article  CAS  PubMed  Google Scholar 

  161. Sood V, Ranjan R, Banerjea AC (2008) Functional analysis of HIV-1 subtypes B and C HIV-1 Tat exons and RGD/QGD motifs with respect to Tat-mediated transactivation and apoptosis. AIDS 22(13):1683–1685. https://doi.org/10.1097/QAD.0b013e3282f56114

    Article  PubMed  Google Scholar 

  162. Chen D, Wang M, Zhou S, Zhou Q (2002) HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J 21(24):6801–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Peter ME, Ehret A, Berndt C, Krammer PH (1997) AIDS and the death receptors. Br Med Bull 53(3):604–616

    Article  CAS  PubMed  Google Scholar 

  164. Herbeuval JP, Grivel JC, Boasso A, Hardy AW, Chougnet C, Dolan MJ, Yagita H, Lifson JD, Shearer GM (2005) CD4 + T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood 106(10):3524–3531. https://doi.org/10.1182/blood-2005-03-1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Garden GA, Budd SL, Tsai E, Hanson L, Kaul M, D’Emilia DM, Friedlander RM, Yuan J, Masliah E, Lipton SA (2002) Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci 22(10):4015–4024. (20026351)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241. https://doi.org/10.1038/nrm2312

    Article  CAS  PubMed  Google Scholar 

  167. Campbell GR, Watkins JD, Esquieu D, Pasquier E, Loret EP, Spector SA (2005) The C terminus of HIV-1 Tat modulates the extent of CD178-mediated apoptosis of T cells. J Biol Chem 280(46):38376–38382. https://doi.org/10.1074/jbc.M506630200

    Article  CAS  PubMed  Google Scholar 

  168. Bartz SR, Emerman M (1999) Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 73(3):1956–1963

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kamori D, Ueno T (2017) HIV-1 Tat and viral latency: what we can learn from naturally occurring sequence variations. Front Microbiol 8:80. https://doi.org/10.3389/fmicb.2017.00080

    Article  PubMed  PubMed Central  Google Scholar 

  171. Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, Esquieu D, Barbier P, de Mareuil J, Braguer D, Kaleebu P, Yirrell DL, Loret EP (2004) The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis. J Biol Chem 279(46):48197–48204. https://doi.org/10.1074/jbc.M406195200

    Article  CAS  PubMed  Google Scholar 

  172. de Mareuil J, Carre M, Barbier P, Campbell GR, Lancelot S, Opi S, Esquieu D, Watkins JD, Prevot C, Braguer D, Peyrot V, Loret EP (2005) HIV-1 Tat protein enhances microtubule polymerization. Retrovirology 2:5. https://doi.org/10.1186/1742-4690-2-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Battaglia PA, Zito S, Macchini A, Gigliani F (2001) A Drosophila model of HIV-Tat-related pathogenicity. J Cell Sci 114(Pt 15):2787–2794

    CAS  PubMed  Google Scholar 

  174. Alizon M, Wain-Hobson S, Montagnier L, Sonigo P (1986) Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients. Cell 46(1):63–74

    Article  CAS  PubMed  Google Scholar 

  175. Egele C, Barbier P, Didier P, Piemont E, Allegro D, Chaloin O, Muller S, Peyrot V, Mely Y (2008) Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat. Retrovirology 5:62. https://doi.org/10.1186/1742-4690-5-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Strack PR, Frey MW, Rizzo CJ, Cordova B, George HJ, Meade R, Ho SP, Corman J, Tritch R, Korant BD (1996) Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc Natl Acad Sci USA 93(18):9571–9576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jacotot E, Ferri KF, El Hamel C, Brenner C, Druillennec S, Hoebeke J, Rustin P, Metivier D, Lenoir C, Geuskens M, Vieira HL, Loeffler M, Belzacq AS, Briand JP, Zamzami N, Edelman L, Xie ZH, Reed JC, Roques BP, Kroemer G (2001) Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein rR and Bcl-2. J Exp Med 193(4):509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zauli G, Gibellini D (1996) The human immunodeficiency virus type-1 (HIV-1) Tat protein and Bcl-2 gene expression. Leuk Lymphoma 23(5–6):551–560. https://doi.org/10.3109/10428199609054864

    Article  CAS  PubMed  Google Scholar 

  179. Zauli G, Gibellini D, Caputo A, Bassini A, Negrini M, Monne M, Mazzoni M, Capitani S (1995) The human immunodeficiency virus type-1 Tat protein upregulates Bcl-2 gene expression in Jurkat T-cell lines and primary peripheral blood mononuclear cells. Blood 86(10):3823–3834

    CAS  PubMed  Google Scholar 

  180. Sastry KJ, Marin MC, Nehete PN, McConnell K, el-Naggar AK, McDonnell TJ (1996) Expression of human immunodeficiency virus type I tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells. Oncogene 13(3):487–493

    CAS  PubMed  Google Scholar 

  181. Zauli G, Gibellini D, Milani D, Mazzoni M, Borgatti P, La Placa M, Capitani S (1993) Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial, and neuronal cell lines from death by apoptosis. Cancer Res 53(19):4481–4485

    CAS  PubMed  Google Scholar 

  182. Gibellini D, Caputo A, Celeghini C, Bassini A, La Placa M, Capitani S, Zauli G (1995) Tat-expressing Jurkat cells show an increased resistance to different apoptotic stimuli, including acute human immunodeficiency virus-type 1 (HIV-1) infection. Br J Haematol 89(1):24–33

    Article  CAS  PubMed  Google Scholar 

  183. Zhang M, Li X, Pang X, Ding L, Wood O, Clouse KA, Hewlett I, Dayton AI (2002) Bcl-2 upregulation by HIV-1 Tat during infection of primary human macrophages in culture. J Biomed Sci 9(2):133–139. https://doi.org/10.1159/000048209

    Article  CAS  PubMed  Google Scholar 

  184. Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S (1996) HIV-1-Tat modulates the function of monocytes and alters their interactions with microvessel endothelial cells. A mechanism of HIV pathogenesis. J Immunol 156(4):1638–1645

    CAS  PubMed  Google Scholar 

  185. Toborek M, Lee YW, Pu H, Malecki A, Flora G, Garrido R, Hennig B, Bauer HC, Nath A (2003) HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J Neurochem 84(1):169–179

    Article  CAS  PubMed  Google Scholar 

  186. Raidel SM, Haase C, Jansen NR, Russ RB, Sutliff RL, Velsor LW, Day BJ, Hoit BD, Samarel AM, Lewis W (2002) Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. Am J Physiol Heart Circ Physiol 282(5):H1672–H1678. https://doi.org/10.1152/ajpheart.00955.2001

    Article  CAS  PubMed  Google Scholar 

  187. Paladugu R, Fu W, Conklin BS, Lin PH, Lumsden AB, Yao Q, Chen C (2003) Hiv Tat protein causes endothelial dysfunction in porcine coronary arteries. J Vasc Surg 38(3):549–555. (discussion 555–546)

    Article  PubMed  Google Scholar 

  188. Rusnati M, Presta M (2002) HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5(3):141–151

    Article  CAS  PubMed  Google Scholar 

  189. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502. https://doi.org/10.1101/cshperspect.a006502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Albini A, Soldi R, Giunciuglio D, Giraudo E, Benelli R, Primo L, Noonan D, Salio M, Camussi G, Rockl W, Bussolino F (1996) The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 2(12):1371–1375

    Article  CAS  PubMed  Google Scholar 

  191. Albini A, Benelli R, Presta M, Rusnati M, Ziche M, Rubartelli A, Paglialunga G, Bussolino F, Noonan D (1996) HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 12(2):289–297

    CAS  PubMed  Google Scholar 

  192. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. https://doi.org/10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  193. Dhawan S, Puri RK, Kumar A, Duplan H, Masson JM, Aggarwal BB (1997) Human immunodeficiency virus-1-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood 90(4):1535–1544

    CAS  PubMed  Google Scholar 

  194. Mitola S, Soldi R, Zanon I, Barra L, Gutierrez MI, Berkhout B, Giacca M, Bussolino F (2000) Identification of specific molecular structures of human immunodeficiency virus type 1 Tat relevant for its biological effects on vascular endothelial cells. J Virol 74(1):344–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Toborek M, Lee YW, Flora G, Pu H, Andras IE, Wylegala E, Hennig B, Nath A (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 25(1):181–199

    Article  PubMed  Google Scholar 

  196. Vene R, Benelli R, Noonan DM, Albini A (2000) HIV-Tat dependent chemotaxis and invasion, key aspects of tat mediated pathogenesis. Clin Exp Metastasis 18(7):533–538

    Article  CAS  PubMed  Google Scholar 

  197. Benelli R, Mortarini R, Anichini A, Giunciuglio D, Noonan DM, Montalti S, Tacchetti C, Albini A (1998) Monocyte-derived dendritic cells and monocytes migrate to HIV-Tat RGD and basic peptides. AIDS 12(3):261–268

    Article  CAS  PubMed  Google Scholar 

  198. Albini A, Benelli R, Giunciuglio D, Cai T, Mariani G, Ferrini S, Noonan DM (1998) Identification of a novel domain of HIV tat involved in monocyte chemotaxis. J Biol Chem 273(26):15895–15900

    Article  CAS  PubMed  Google Scholar 

  199. Premack BA, Schall TJ (1996) Chemokine receptors: gateways to inflammation and infection. Nat Med 2(11):1174–1178

    Article  CAS  PubMed  Google Scholar 

  200. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95(6):3117–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bonwetsch R, Croul S, Richardson MW, Lorenzana C, Del Valle L, Sverstiuk AE, Amini S, Morgello S, Khalili K, Rappaport J (1999) Role of HIV-1 Tat and CC chemokine MIP-1alpha in the pathogenesis of HIV associated central nervous system disorders. J Neurovirol 5(6):685–694

    Article  CAS  PubMed  Google Scholar 

  202. Weiss JM, Nath A, Major EO, Berman JW (1999) HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol 163(5):2953–2959

    CAS  PubMed  Google Scholar 

  203. Geiss GK, Bumgarner RE, An MC, Agy MB, van ‘t Wout AB, Hammersmark E, Carter VS, Upchurch D, Mullins JI, Katze MG (2000) Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology 266(1):8–16. https://doi.org/10.1006/viro.1999.0044

    Article  CAS  PubMed  Google Scholar 

  204. Fan J, Bass HZ, Fahey JL (1993) Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol 151(9):5031–5040

    CAS  PubMed  Google Scholar 

  205. Lafrenie RM, Wahl LM, Epstein JS, Yamada KM, Dhawan S (1997) Activation of monocytes by HIV-Tat treatment is mediated by cytokine expression. J Immunol 159(8):4077–4083

    CAS  PubMed  Google Scholar 

  206. Nath A, Conant K, Chen P, Scott C, Major EO (1999) Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 274(24):17098–17102

    Article  CAS  PubMed  Google Scholar 

  207. Kiernan R, Bres V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M (2003) Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 278(4):2758–2766. https://doi.org/10.1074/jbc.M209572200

    Article  CAS  PubMed  Google Scholar 

  208. Lenardo MJ, Baltimore D (1989) NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58(2):227–229

    Article  CAS  PubMed  Google Scholar 

  209. Kwon HS, Brent MM, Getachew R, Jayakumar P, Chen LF, Schnolzer M, McBurney MW, Marmorstein R, Greene WC, Ott M (2008) Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe 3(3):158–167. https://doi.org/10.1016/j.chom.2008.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bachmann MF, Oxenius A (2007) Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep 8(12):1142–1148. https://doi.org/10.1038/sj.embor.7401099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N, McCloskey T, Pahwa S, Verdin E (1997) Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 275(5305):1481–1485

    Article  CAS  PubMed  Google Scholar 

  212. Carvallo L, Lopez L, Fajardo JE, Jaureguiberry-Bravo M, Fiser A, Berman JW (2017) HIV-Tat regulates macrophage gene expression in the context of neuroAIDS. PLoS One 12(6):e0179882. https://doi.org/10.1371/journal.pone.0179882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bouwman RD, Palser A, Parry CM, Coulter E, Rasaiyaah J, Kellam P, Jenner RG (2014) Human immunodeficiency virus Tat associates with a specific set of cellular RNAs. Retrovirology 11:53. https://doi.org/10.1186/1742-4690-11-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sharma V, Knobloch TJ, Benjamin D (1995) Differential expression of cytokine genes in HIV-1 tat transfected T and B cell lines. Biochem Biophys Res Commun 208(2):704–713. https://doi.org/10.1006/bbrc.1995.1395

    Article  CAS  PubMed  Google Scholar 

  215. Dabrowska A, Kim N, Aldovini A (2008) Tat-induced FOXO3a is a key mediator of apoptosis in HIV-1-infected human CD4 + T lymphocytes. J Immunol 181(12):8460–8477

    Article  CAS  PubMed  Google Scholar 

  216. Izmailova E, Bertley FM, Huang Q, Makori N, Miller CJ, Young RA, Aldovini A (2003) HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med 9(2):191–197. https://doi.org/10.1038/nm822

    Article  CAS  PubMed  Google Scholar 

  217. Ranjbar S, Rajsbaum R, Goldfeld AE (2006) Transactivator of transcription from HIV type 1 subtype E selectively inhibits TNF gene expression via interference with chromatin remodeling of the TNF locus. J Immunol 176(7):4182–4190

    Article  CAS  PubMed  Google Scholar 

  218. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3(3):221–227. https://doi.org/10.1038/ni0302-221

    Article  CAS  PubMed  Google Scholar 

  219. Israel N, Hazan U, Alcami J, Munier A, Arenzana-Seisdedos F, Bachelerie F, Israel A, Virelizier JL (1989) Tumor necrosis factor stimulates transcription of HIV-1 in human T lymphocytes, independently and synergistically with mitogens. J Immunol 143(12):3956–3960

    CAS  PubMed  Google Scholar 

  220. Hiscott J, Kwon H, Genin P (2001) Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest 107(2):143–151. https://doi.org/10.1172/JCI11918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70(3):1475–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Li W, Huang Y, Reid R, Steiner J, Malpica-Llanos T, Darden TA, Shankar SK, Mahadevan A, Satishchandra P, Nath A (2008) NMDA receptor activation by HIV-Tat protein is clade dependent. J Neurosci 28(47):12190–12198. https://doi.org/10.1523/JNEUROSCI.3019-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13(6):2651–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sengpiel B, Preis E, Krieglstein J, Prehn JH (1998) NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur J Neurosci 10(5):1903–1910

    Article  CAS  PubMed  Google Scholar 

  225. Bertrand SJ, Aksenova MV, Mactutus CF, Booze RM (2013) HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp Neurol 248:228–235. https://doi.org/10.1016/j.expneurol.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhang W, Benson DL (2001) Stages of synapse development defined by dependence on F-actin. J Neurosci 21(14):5169–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12(2):376–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90(17):7951–7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Holscher C (2005) Development of beta-amyloid-induced neurodegeneration in Alzheimer’s disease and novel neuroprotective strategies. Rev Neurosci 16(3):181–212

    Article  CAS  PubMed  Google Scholar 

  230. Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19(4):407–411

    Article  CAS  PubMed  Google Scholar 

  231. Achim CL, Adame A, Dumaop W, Everall IP, Masliah E, Neurobehavioral Research C (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol 4(2):190–199. https://doi.org/10.1007/s11481-009-9152-8

    Article  PubMed  PubMed Central  Google Scholar 

  232. Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34(10):2370–2378. https://doi.org/10.1016/j.neurobiolaging.2013.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Nixon RA, Cataldo AM (1995) The endosomal-lysosomal system of neurons: new roles. Trends Neurosci 18(11):489–496

    Article  CAS  PubMed  Google Scholar 

  234. Bahr BA, Bendiske J (2002) The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 83(3):481–489

    Article  CAS  PubMed  Google Scholar 

  235. Annaert W, De Strooper B (2002) A cell biological perspective on Alzheimer’s disease. Annu Rev Cell Dev Biol 18:25–51. https://doi.org/10.1146/annurev.cellbio.18.020402.142302

    Article  CAS  PubMed  Google Scholar 

  236. Kim J, Yoon JH, Kim YS (2013) HIV-1 Tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 8(11):e77972. https://doi.org/10.1371/journal.pone.0077972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hategan A, Bianchet MA, Steiner J, Karnaukhova E, Masliah E, Fields A, Lee MH, Dickens AM, Haughey N, Dimitriadis EK, Nath A (2017) HIV Tat protein and amyloid-beta peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol 24(4):379–386. https://doi.org/10.1038/nsmb.3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2010) HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett 475(3):174–178. https://doi.org/10.1016/j.neulet.2010.03.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Johri MK, Sharma N, Singh SK (2015) HIV Tat protein: Is Tat-C much trickier than Tat-B? J Med Virol 87(8):1334–1343. https://doi.org/10.1002/jmv.24182

    Article  CAS  PubMed  Google Scholar 

  240. Kurosu T, Mukai T, Komoto S, Ibrahim MS, Li YG, Kobayashi T, Tsuji S, Ikuta K (2002) Human immunodeficiency virus type 1 subtype C exhibits higher transactivation activity of Tat than subtypes B and E. Microbiol Immunol 46(11):787–799

    Article  CAS  PubMed  Google Scholar 

  241. Gandhi N, Saiyed Z, Thangavel S, Rodriguez J, Rao KV, Nair MP (2009) Differential effects of HIV type 1 clade B and clade C Tat protein on expression of proinflammatory and antiinflammatory cytokines by primary monocytes. AIDS Res Hum Retroviruses 25(7):691–699. https://doi.org/10.1089/aid.2008.0299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Bayes-Genis A, Barallat J, Richards AM (2016) A test in context: neprilysin: function, inhibition, and biomarker. J Am Coll Cardiol 68(6):639–653. https://doi.org/10.1016/j.jacc.2016.04.060

    Article  CAS  PubMed  Google Scholar 

  243. Rempel HC, Pulliam L (2005) HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 19(2):127–135

    Article  CAS  PubMed  Google Scholar 

  244. Daily A, Nath A, Hersh LB (2006) Tat peptides inhibit neprilysin. J Neurovirol 12(3):153–160. https://doi.org/10.1080/13550280600760677

    Article  CAS  PubMed  Google Scholar 

  245. Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112(10):5147–5192. https://doi.org/10.1021/cr3000994

    Article  CAS  PubMed  Google Scholar 

  246. Butterfield DA (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36(12):1307–1313

    Article  CAS  PubMed  Google Scholar 

  247. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120(4):545–555. https://doi.org/10.1016/j.cell.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  248. Allen TM, Altfeld M, Geer SC, Kalife ET, Moore C, O’Sullivan KM, Desouza I, Feeney ME, Eldridge RL, Maier EL, Kaufmann DE, Lahaie MP, Reyor L, Tanzi G, Johnston MN, Brander C, Draenert R, Rockstroh JK, Jessen H, Rosenberg ES, Mallal SA, Walker BD (2005) Selective escape from CD8 + T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 79(21):13239–13249. https://doi.org/10.1128/JVI.79.21.13239-13249.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Allen TM, O’Connor DH, Jing P, Dzuris JL, Mothe BR, Vogel TU, Dunphy E, Liebl ME, Emerson C, Wilson N, Kunstman KJ, Wang X, Allison DB, Hughes AL, Desrosiers RC, Altman JD, Wolinsky SM, Sette A, Watkins DI (2000) Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407(6802):386–390. https://doi.org/10.1038/35030124

    Article  CAS  PubMed  Google Scholar 

  250. Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 97(21):11466–11471. https://doi.org/10.1073/pnas.97.21.11466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Desfosses Y, Solis M, Sun Q, Grandvaux N, Van Lint C, Burny A, Gatignol A, Wainberg MA, Lin R, Hiscott J (2005) Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins. J Virol 79(14):9180–9191. https://doi.org/10.1128/JVI.79.14.9180-9191.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stutz AM, Jauch A, Aiyar RS, Pau G, Delhomme N, Gagneur J, Korbel JO, Huber W, Steinmetz LM (2013) The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3(8):1213–1224. https://doi.org/10.1534/g3.113.005777

    Article  CAS  Google Scholar 

  253. Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, Pasquali F, Maserati E (2015) High variability of genomic instability and gene expression profiling in different HeLa clones. Sci Rep 5:15377. https://doi.org/10.1038/srep15377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M, Shi J, Baran P, Fromentin R, Chomont N, Valente ST (2012) An analog of the natural steroidal alkaloid cortistatin A potently suppresses Tat-dependent HIV transcription. Cell Host Microbe 12(1):97–108. https://doi.org/10.1016/j.chom.2012.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ferrucci A, Nonnemacher MR, Wigdahl B (2011) Human immunodeficiency virus viral protein R as an extracellular protein in neuropathogenesis. Adv Virus Res 81:165–199. https://doi.org/10.1016/B978-0-12-385885-6.00010-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. James T, Nonnemacher MR, Wigdahl B, Krebs FC (2016) Defining the roles for Vpr in HIV-1-associated neuropathogenesis. J Neurovirol 22(4):403–415. https://doi.org/10.1007/s13365-016-0436-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Dampier W, Antell GC, Aiamkitsumrit B, Nonnemacher MR, Jacobson JM, Pirrone V, Zhong W, Kercher K, Passic S, Williams JW, James T, Devlin KN, Giovannetti T, Libon DJ, Szep Z, Ehrlich GD, Wigdahl B, Krebs FC (2017) Specific amino acids in HIV-1 Vpr are significantly associated with differences in patient neurocognitive status. J Neurovirol 23(1):113–124. https://doi.org/10.1007/s13365-016-0462-3

    Article  CAS  PubMed  Google Scholar 

  258. Hogan TH, Nonnemacher MR, Krebs FC, Henderson A, Wigdahl B (2003) HIV-1 Vpr binding to HIV-1 LTR C/EBP cis-acting elements and adjacent regions is sequence-specific. Biomed Pharmacother 57(1):41–48

    Article  CAS  PubMed  Google Scholar 

  259. Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33. https://doi.org/10.1177/1756285612461679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Rygiel K (2016) Novel strategies for Alzheimer’s disease treatment: An overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol 48(6):629–636. https://doi.org/10.4103/0253-7613.194867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors were funded in part by the Public Health Service, National Institutes of Health, through grants from the National Institute of Neurological Disorders and Stroke (NINDS) R01 NS089435 (PI, Michael R. Nonnemacher), the NIMH Comprehensive NeuroAIDS Center (CNAC) P30 MH092177 (Kamel Khalili, PI; Brian Wigdahl, PI of the Drexel subcontract involving the Clinical and Translational Research Support Core) and under the Ruth L. Kirschstein National Research Service Award T32 MH079785 (PI, Jay Rappaport; with Brian Wigdahl serving as the PI of the Drexel University College of Medicine component and Olimpia Meucci as Co-Director). The contents of the paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Nonnemacher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Edited by: Roberto F. Speck.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spector, C., Mele, A.R., Wigdahl, B. et al. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol 208, 131–169 (2019). https://doi.org/10.1007/s00430-019-00583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00583-z

Keywords

Navigation