Skip to main content

Advertisement

Log in

Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The long terminal repeat (LTR) regulates gene expression of HIV-1 by interacting with multiple host and viral factors. Cross-sectional studies in the pre-HAART era demonstrated that single nucleotide polymorphisms (SNPs) in peripheral blood-derived LTRs (a C-to-T change at position 3 of C/EBP site I (3T) and at position 5 of Sp site III (5T)) increased in frequency as disease severity increased. Additionally, the 3T variant correlated with HIV-1-associated dementia. LTR sequences derived by longitudinal sampling of peripheral blood from a single patient in the DrexelMed HIV/AIDS Genetic Analysis Cohort resulted in the detection of the 3T and 5T co-selected SNPs before the onset of neurologic impairment, demonstrating that these SNPs may be useful in predicting HIV-associated neurological complications. The relative fitness of the LTRs containing the 3T and/or 5T co-selected SNPs as they evolve in their native patient-derived LTR backbone structure demonstrated a spectrum of basal and Tat-mediated transcriptional activities using the IIIB-derived Tat and colinear Tat derived from the same molecular clone containing the 3T/5T LTR SNP. In silico predictions utilizing colinear envelope sequence suggested that the patient’s virus evolved from an X4 to an R5 swarm prior to the development of neurological complications and more advanced HIV disease. These results suggest that the HIV-1 genomic swarm may evolve during the course of disease in response to selective pressures that lead to changes in prevalence of specific polymorphisms in the LTR, env, and/or tat that could predict the onset of neurological disease and result in alterations in viral function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boven LA, Noorbakhsh F, Bouma G, van der Zee R, Vargas DL, Pardo C, McArthur JC, Nottet HS, Power C (2007) Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 13:173–184

    Article  CAS  PubMed  Google Scholar 

  • Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, Russ C, Lander ES, Nusbaum C, Jaffe DB (2008) Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res 18:763–770

    Article  CAS  PubMed  Google Scholar 

  • Burdo TH, Gartner S, Mauger D, Wigdahl B (2004) Region-specific distribution of human immunodeficiency virus type 1 long terminal repeats containing specific configurations of CCAAT/enhancer-binding protein site II in brains derived from demented and nondemented patients. J Neurovirol 10(Suppl 1):7–14

    CAS  PubMed  Google Scholar 

  • Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditch-Crovo P, Siliciano RF (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188

    Article  CAS  PubMed  Google Scholar 

  • de Jong JJ, Goudsmit J, Keulen W, Klaver B, Krone W, Tersmette M, de Ronde A (1992) Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity. J Virol 66:757–765

    PubMed  Google Scholar 

  • Fields BN, Knipe DM, Howley PM, Griffin DE (2001) Fields’ virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Fields BN, Knipe DM, Howley PM (2007) Fields’ virology, 5th edn. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  • Fouchier RA, Groenink M, Kootstra NA, Tersmette M, Huisman HG, Miedema F, Schuitemaker H (1992) Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol 66:3183–3187

    CAS  PubMed  Google Scholar 

  • Gao F, Robertson DL, Morrison SG, Hui H, Craig S, Decker J, Fultz PN, Girard M, Shaw GM, Hahn BH, Sharp PM (1996) The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol 70: 7013–7029

    Google Scholar 

  • Garcia-Crespo K, Cadilla C, Skolasky R, Melendez LM (2010) Restricted HIV-1 replication in placental macrophages is caused by inefficient viral transcription. J Leukoc Biol 87:633–636

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Humana, Totowa

    Google Scholar 

  • Henderson AJ, Calame KL (1997) CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc Natl Acad Sci USA 94:8714–8719

    Article  CAS  PubMed  Google Scholar 

  • Henderson AJ, Zou X, Calame KL (1995) C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J Virol 69:5337–5344

    CAS  PubMed  Google Scholar 

  • Henderson AJ, Connor RI, Calame KL (1996) C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 5:91–101

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Tasca S, Shek L, Li A, Gettie A, Blanchard J, Boden D, Cheng-Mayer C (2007) Coreceptor switch in R5-tropic simian/human immunodeficiency virus-infected macaques. J Virol 81:8621–8633

    Article  CAS  PubMed  Google Scholar 

  • Hogan TH, Stauff DL, Krebs FC, Gartner S, Quiterio SJ, Wigdahl B (2003) Structural and functional evolution of human immunodeficiency virus type 1 long terminal repeat CCAAT/enhancer binding protein sites and their use as molecular markers for central nervous system disease progression. J Neurovirol 9:55–68

    CAS  PubMed  Google Scholar 

  • Los Alamos HIV-1 sequence database. http://www.hiv.lanl.gov/

  • Hughes ES, Bell JE, Simmonds P (1997) Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes. J Virol 71:1272–1280

    CAS  PubMed  Google Scholar 

  • Jensen MA, van’t Wout AB (2003) Predicting HIV-1 coreceptor usage with sequence analysis. AIDS Rev 5:104–112

    PubMed  Google Scholar 

  • Jensen MA, Li FS, van’t Wout AB, Nickle DC, Shriner D, He HX, McLaughlin S, Shankarappa R, Margolick JB, Mullins JI (2003) Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol 77:13376–13388

    Article  CAS  PubMed  Google Scholar 

  • Jones KA, Kadonaga JT, Luciw PA, Tjian R (1986) Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 232:755–759

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Gonzalez-Scarano F, Zeichner SL, Alwine JC (1993) Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the −201 to −130 region of the long terminal repeat. J Virol 67:1658–1662

    CAS  PubMed  Google Scholar 

  • Kitchen SG, Jones NR, LaForge S, Whitmire JK, Vu BA, Galic Z, Brooks DG, Brown SJ, Kitchen CM, Zack JA (2004) CD4 on CD8(+) T cells directly enhances effector function and is a target for HIV infection. Proc Natl Acad Sci USA 101:8727–8732

    Article  CAS  PubMed  Google Scholar 

  • Marozzi A, Meneveri R, Giacca M, Gutierrez MI, Siccardi AG, Ginelli E (1998) In vitro selection of HIV-1 TAR variants by the Tat protein. J Biotechnol 61:117–128

    Article  CAS  PubMed  Google Scholar 

  • McAllister JJ, Phillips D, Millhouse S, Conner J, Hogan T, Ross HL, Wigdahl B (2000) Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. Virology 274:262–277

    Article  CAS  PubMed  Google Scholar 

  • Moses AV, Ibanez C, Gaynor R, Ghazal P, Nelson JA (1994) Differential role of long terminal repeat control elements for the regulation of basal and Tat-mediated transcription of the human immunodeficiency virus in stimulated and unstimulated primary human macrophages. J Virol 68:298–307

    CAS  PubMed  Google Scholar 

  • Nonnemacher MR, Irish BP, Liu Y, Mauger D, Wigdahl B (2004) Specific sequence configurations of HIV-1 LTR G/C box array result in altered recruitment of Sp isoforms and correlate with disease progression. J Neuroimmunol 157:39–47

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo G, Graziosi C, Fauci AS (1993) New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med 328:327–335

    Article  CAS  PubMed  Google Scholar 

  • Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ (2000) A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 28:663–668

    Article  CAS  PubMed  Google Scholar 

  • Peters PJ, Duenas-Decamp MJ, Sullivan WM, Clapham PR (2007) Variation of macrophage tropism among HIV-1 R5 envelopes in brain and other tissues. J Neuroimmune Pharmacol 2:32–41

    Article  PubMed  Google Scholar 

  • Pirrone V, Passic S, Wigdahl B, Rando RF, Labib M, Krebs FC (2010) A styrene-alt-maleic acid copolymer is an effective inhibtor of R5 and X4 human immunodeficiency virus type 1 infection. J Biomed Biotechnol 2010:548749. doi:10.1155/2010/548749

  • Price RW, Brew BJ (1988) The AIDS dementia complex. J Infect Dis 158:1079–1083

    CAS  PubMed  Google Scholar 

  • Ross EK, Buckler-White AJ, Rabson AB, Englund G, Martin MA (1991) Contribution of NF-kappa B and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. J Virol 65:4350–4358

    CAS  PubMed  Google Scholar 

  • Ross HL, Gartner S, McArthur JC, Corboy JR, McAllister JJ, Millhouse S, Wigdahl B (2001) HIV-1 LTR C/EBP binding site sequence configurations preferentially encountered in brain lead to enhanced C/EBP factor binding and increased LTR-specific activity. J Neurovirol 7:235–249

    Article  CAS  PubMed  Google Scholar 

  • Sacktor NC, Wong M, Nakasujja N, Skolasky RL, Selnes OA, Musisi S, Robertson K, McArthur JC, Ronald A, Katabira E (2005) The international HIV dementia scale: a new rapid screening test for HIV dementia. AIDS 19:1367–1374

    PubMed  Google Scholar 

  • Shioda T, Levy JA, Cheng-Mayer C (1992) Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 89:9434–9438

    Article  CAS  PubMed  Google Scholar 

  • van Marle G, Power C (2005) Human immunodeficiency virus type 1 genetic diversity in the nervous system: evolutionary epiphenomenon or disease determinant? J Neurovirol 11:107–128

    Article  CAS  PubMed  Google Scholar 

  • Zeichner SL, Kim JY, Alwine JC (1991) Linker-scanning mutational analysis of the transcriptional activity of the human immunodeficiency virus type 1 long terminal repeat. J Virol 65:2436–2444

    CAS  PubMed  Google Scholar 

  • Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were funded in part by the Public Health Service, National Institutes of Health through grants from the National Institute of Neurological Disorders and Stroke, NS32092 and NS46263, the National Institute of Drug Abuse, DA19807 (Dr. Brian Wigdahl, Principal Investigator), and under the Ruth L. Kirschstein National Research Service Award 5T32MH079785 (Sonia Shah). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Dr. Julio Martin-Garcia is funded through grants from the National Institute of Neurological Disorders and Stroke NIH NS065727. Dr. Michael Nonnemacher was supported by faculty development funds provided by the Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Wigdahl.

Additional information

Luna Li and Benjamas Aiamkitsumrit have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Aiamkitsumrit, B., Pirrone, V. et al. Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment. J. Neurovirol. 17, 92–109 (2011). https://doi.org/10.1007/s13365-010-0014-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-010-0014-1

Keywords

Navigation