Różalski A, Kwil I, Torzewska A, Baranowska M, Stączek P (2007) Bakterie z rodzaju Proteus—cechy i czynniki chorobotwórczości. Post Hig Med Dosw 61:204–219
Google Scholar
Drzewiecka D (2016) Significance and roles of Proteus spp. bacteria in natural environments. Microb Ecol 2016:1–18
Coker C, Poore CA, Li X, Mobley HLT (2000) Pathogenesis of Proteus mirabilis urinary tract infections. Microb Infect 2:1497–1505
CAS
Article
Google Scholar
O’Hara CM, Brenner FW, Steigerwalt AG, Hill BC, Holmes B, Grimont PAD, Hawkey PM, Penner JL, Miller JM, Brenner D (2000) Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov., nom. rev. and unnamed Proteus genomospecies 4, 5 and 6. Int J Syst Evol Microbiol 50:1869–1875
Article
PubMed
Google Scholar
Behrendt U, Augustin J, Spröer C, Gelbrecht J, Schumann P, Ulrich A (2015) Taxonomic characterization of Proteus terrae sp.nov., a N2O-producing, nitrate-ammonifying soli bacterium. Anton Leeuw 108:1457–1468
CAS
Article
Google Scholar
Hyun DW, Jung MJ, Kim MS, Shin NR, Kim PS, Whon TW, Bae JW (2016) Proteus cibarius sp. nov., a swarming bacterium from Jeotgal, a traditional Korean fermented seafood, and emended description of the genus Proteus. Int J Syst Evol Microbiol 66(6):2158–2164
CAS
Article
PubMed
Google Scholar
O’Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13:534–546
Article
PubMed Central
PubMed
Google Scholar
Armbruster CE, Mobley HLT (2012) Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 10(11):743–754
CAS
Article
PubMed Central
PubMed
Google Scholar
Różalski A, Torzewska A, Moryl M, Kwil I, Maszewska A, Ostrowska K, Drzewiecka D, Zabłotni A, Palusiak A, Siwińska M, Stączek P (2012) Proteus sp.—an opportunistic bacterial pathogen—classification, swarming growth, clinical significance and virulence factors. Folia Biol Oecol 8:1–17
Article
Google Scholar
Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME (2008) Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 21:26–59
CAS
Article
PubMed Central
PubMed
Google Scholar
Chen C-Y, Chen Y-H, Lu P-L, Lin W-R, Chen T-C, Lin C-Y (2012) Proteus mirabilis urinary tract infection and bacteriemia: risk factors, clinical presentation, and outcomes. J Microbiol Immunol Infec 45:228–236
CAS
Article
Google Scholar
Jacobsen SM, Shirtliff ME. (2011) Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence 2:460–465
Stickler DJ, Feneley RC (2010) The encrustation and blockage of long-term indwelling bladder catheters: a way forward in prevention and control. Spinal Cord 48:784–790
CAS
Article
PubMed
Google Scholar
Moryl M, Kaleta A, Strzelecki K, Różalska S, Różalski A (2014) Effect of nutrient and stress factors on polysaccharides synthesis in Proteus mirabilis biofilm. Acta Biochim Pol 61:133–139
PubMed
Google Scholar
Raetz CR, Withfield C (2002) Lipopolysaccharide endotoxin. Ann Rev Biochem 71:635–700
CAS
Article
PubMed
Google Scholar
De Castro C, Parrilli M, Holst O, Molinaro A (2010) Microbe-associated molecular patterns in innate immunity: extraction and chemical analysis of gram-negative bacterial lipopolysaccharides. Methods Enzymol 480:89–115
Article
PubMed
Google Scholar
Różalski A, Stączek P (2010) Proteus. In: Liu D (ed) Molecular detection of human bacterial pathogens. CRC Press, Boca Raton, pp. 981–996
Google Scholar
Torzewska A, Stączek P, Różalski A (2003) Crystallization of urine mineral components may depend on the chemical nature of Proteus endotoxin polysaccharides. J Med Microbiol 52:471–477
CAS
Article
PubMed
Google Scholar
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilm. Int J Antimicrob Agents 35:322–332
Article
PubMed
Google Scholar
Chadha T (2014) Bacterial biofilms: survival mechanisms and antibiotic resistance. J Bacteriol Parasitol 5(3):1–4
Article
Google Scholar
Benamara H, Rihouey C, Jouenne T, Alexandre S (2011) Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa. Biochim Biophys Acta 1808:98–105
CAS
Article
PubMed
Google Scholar
Ciornei CD, Novikov A, Beloin C, Fitting C, Caroff M, Ghigo J-M, Cavaillon J-M, Adib-Conquy M (2010) Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immune 16:288–301
CAS
Article
Google Scholar
Sidorczyk Z, Zych K, Toukach FV, Arbatsky NP, Zabłotni A, Shashkov AS, Knirel YA (2002) Structure of the O-polysaccharide and classification of Proteus mirabilis strain G1 in Proteus serogroup O3. Eur J Biochem 269:1406–1412
CAS
Article
PubMed
Google Scholar
Westphal O, Jann K (1965) Bacterial lipopolysaccharides. Extraction with phenol–water and further applications of the procedure. Methods Carbohydr Chem 5:83–91
CAS
Google Scholar
Palusiak A (2015) The antigens contributing to the serological cross-reactions of Proteus antisera with Klebsiella representatives. Mol Immunol 64:228–234
CAS
Article
PubMed
Google Scholar
Corzo J, Perez-Galdona R, León-barrios M, Gutiérrez-Navarro AM (1991) Alcian blue fixation allows silver staining of the isolated polysaccharide component of bacterial lipopolysaccharides in polyacrylamide gels. Electrophoresis 12;439–441
Tsai C-M, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharide in polyacrylamide gels. Annal Biochem 119:115–119
CAS
Article
Google Scholar
Drzewiecka D, Arbatsky NP, Shashkov AS, Staczek P, Knirel YA, Sidorczyk Z (2008) Structure and serological properties of the O-antigen of two clinical Proteus mirabilis strains classified into a new Proteus O77 serogroup. FEMS Immunol Med Microbiol 54:185–194
CAS
Article
PubMed
Google Scholar
Arbatsky NP, Kondakova AN, Shashkov AS, Drutskaya MS, Belousov PV, Nedospasov SA, Petrova MA, Knirel YA (2010) Structure of the O-antigen of Acinetobacter iwoffii EK30A; identification of d-homoserine, a novel non-sugar component of bacterial polysaccharides. Org Biomol Chem 8(15):3571–3577
CAS
Article
PubMed
Google Scholar
Drzewiecka D, Arbatsky NP, Kondakova AN, Shashkov AS, Knirel YA (2016) Structures and serospecificity of threonine-containing O polysaccharides of two clinical isolates belonging to the genus Proteus and their classification into O11 subserogroups. J Med Microbiol 65(11):1260–1266
Article
PubMed
Google Scholar
Arbatsky NP, Shashkov AS, Literacka E, Widmalm G, Kaca W, Knirel YA (2000) Structure of the O-specific polysaccharide of Proteus mirabilis O11, another Proteus O-antigen containing an amide of d-galacturonic acid with l-threonine. Carbohydr Res 323:81–86
Kondakova AN, Vinogradov EV, Knirel YA, Lindner B (2005) Application of electrospray ionization with Fourier transform ion cyclotron resonance mass spectrometry for structural screening of core oligosaccharides from lipopolysaccharides of the bacteria Proteus. Rapid Commun Mass Spectrom 19:2343–2339
CAS
Article
PubMed
Google Scholar
Vinogradov EV, Sidorczyk Z, Knirel YA (2002) Structure of the lipopolysaccharide core region of the bacteria of the genus Proteus. Aust J Chem 55:61–67
CAS
Article
Google Scholar
Sidorczyk Z, Zähringer U, Rietschel ET (1983) Chemical structure of the lipid A component of the lipopolysaccharide from a Proteus mirabilis Re-mutant. Eur J Biochem 137:15–22
CAS
Article
PubMed
Google Scholar
Donlan RM. (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890
Giwercman B, Fomsgaard A, Mansa B, Hoiby N (1992) Polyacrylamide gel electrophoresis analysis of lipopolysaccharide from Pseudomonas aeruginosa growing planktonicaly and as biofilm. FEMS Microbiol Immunol 89:225–230
Article
Google Scholar
Masadeh MM, Mhaidat NM, Alzoubi KH, Hussein EI, Al-Trad EI (2013) In vitro determination of the antibiotic susceptibility of biofilm-forming Pseudomonas aeruginosa and Staphylococcus aureus: possible role of proteolytic activity and membrane lipopolysaccharide. Infect Drug Resist 6:27–32
CAS
Article
PubMed Central
PubMed
Google Scholar
Larsson P (1984) Serology of Proteus mirabilis and Proteus vulgaris. Meth Microbiol 14:187–214
CAS
Article
Google Scholar
Wang L, Hu X, Tao G, Wang X (2012) Outer membrane defect and stronger biofilm formation caused by inactivation of a gene encoding for heptosyltransferase I in Cronobacter sakazakii ATCC BAA-894. J Appl Microbiol 112:985–997
CAS
Article
PubMed
Google Scholar
Lee Y-W, Jeong S-Y, In Y-H, Kim K-Y, So J-S, Chang W-Set (2010) Lack of O-polysaccharide enhances biofilm formation by Bradyrhizobium japonicum. Lett Appl Microbiol 50(5):452–456
Perepelov AV, Zabłotni A, Shashkov AS, Knirel YA, Sidorczyk Z (2005) Structure of the O-polysaccharide and serological studies of the lipopolysaccharide of Proteus mirabilis 2002. Carbohydr Res 340:2305–2310
CAS
Article
PubMed
Google Scholar
Kołodziejska K, Perepelov AV, Zabłotni A, Drzewiecka D, Senchenkova SN, Zych K, Shashkov AS, Knirel YA, Sidorczyk Z (2006) Structure of the glycerol phosphate-containing O-polysaccharides and serological studies of the lipopolysaccharides of Proteus mirabilis CCUG 10704 (OE) and Proteus vulgaris TG 103 classified into a new Proteus serogroup, O54. FEMS Immunol Med Microbiol 47:267–274
Article
PubMed
Google Scholar
Zabłotni A, Zych K, Kondakova AN, Siwińska M, Knirel YA, Sidorczyk Z (2007) Serological and structural characterization of the O-antigens of the unclassified Proteus mirabilis strains TG 83, TG 319, and CCUG 10700 (OA). Arch Immunol Ther Exp 55:347–352
Palusiak A, Siwińska M, Zabłotni A (2015) Proteus mirabilis RMS 203 as a new representative of the O13 Proteus serogroup. Acta Biochim Pol 62(4):691–695
Lau PCY, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS (2009) Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol 191:6618–6631
CAS
Article
PubMed Central
PubMed
Google Scholar
Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilm and the environment. FEMS Microbial Rev 20:291–303
CAS
Article
Google Scholar
Naito M, Frirdich E, Fields JA, Pryjma M, Li J, Cameron A, Gilbert M, Thompson SA, Gaynor EC (2010) Effects of sequential Campylobacter jejuni 81–176 lipopolysaccharide core truncations on biofilm formation, stress survival, and pathogenesis. J Bacteriol 192:2182–2192
CAS
Article
PubMed Central
PubMed
Google Scholar
Nakao R, Ramstedt M, Wai SN, Uhlin BE. (2012) Enhanced biofilms formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLOS One 7(12): e51241. https://doi.org/10.1371/journal.pone.0051241
CAS
Article
PubMed Central
PubMed
Google Scholar
Chalabaev S, Chauhan A, Novikov A, Iyer P, Szczesny M, Beloin C, Gilbert M, Thompson SA, Gaynor EC (2010) Biofilms formed by Gram-negative bacteria undergo increased lipid A palmitoylation, enhancing in vivo survival. MBio 5:1–10
Google Scholar