Skip to main content
Log in

Monoassociation with probiotic Lactobacillus delbrueckii UFV-H2b20 stimulates the immune system and protects germfree mice against Listeria monocytogenes infection

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

In the present study, we investigated the protective effects of Lactobacillus delbrueckii UFV-H2b20 on the resistance to Listeria monocytogenes infection in gnotobiotic mice. Germfree mice or monoassociated mice were infected with L. monocytogenes, and the microbiological and immunological responses were evaluated after 1, 3, and 5 days of infection. Monoassociation with L. delbrueckii was capable of protecting mice against death caused by L. monocytogenes and induced a faster clearance of the bacteria in the liver, spleen, and peritoneal cavity at days 1, 3, and 5 post-infection. Also, monoassociated mice displayed less liver injury than germfree mice. The production of TNF-α in the serum, peritoneal cavity, and gut was augmented in monoassociated mice. Likewise, the levels of IFN-γ found on supernatants of spleen cells cultures were higher after the monoassociation. In addition, increased production of nitric oxide in peritoneal cell cultures supernatants and in serum was observed in mice that received L. delbrueckii. The monoassociation with L. delbrueckii induced higher production of IL-10 in the mucosal immune system. We conclude that monoassociation with L. delbrueckii UFV-H2b20 protects mice from death caused by L. monocytogenes infection by favoring effector responses while preventing their immunopathological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FAO/WHO (2001) Evaluation of health and nutritional properties of probiotics in food, including powder milk with live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report. 1–34

  2. Minocha A (2009) Probiotics for preventive health. Nutr Clin Pract 24:227–241

    Article  PubMed  Google Scholar 

  3. Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME (2009) Probiotics and immunity. J Gastroenterol 44:26–46

    Article  PubMed  Google Scholar 

  4. Neves JTM, Floresta F, Moraes CA (2005) Partial characterization of ribosomal operons of Lactobacillus delbrueckii UFV H2b20. J Microbiol 36:182

    Google Scholar 

  5. Neumann E, Oliveira MA, Cabral CM, Moura LN, Nicoli JR, Vieira EC, Cara DC, Podoprigora GI, Vieira LQ (1998) Monoassociation with Lactobacillus acidophilus UFV-H2b20 stimulates the immune defense mechanisms of germfree mice. Braz J Med Biol Res 31:1565–1573

    Article  CAS  PubMed  Google Scholar 

  6. Cross ML (2002) Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol 34:245–253

    Article  CAS  PubMed  Google Scholar 

  7. Chuang L, Wu KG, Pai C, Hsieh PS, Tsai JJ, Yen JH, Lin MY (2007) Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. J Agric Food Chem 55:11080–11086

    Article  CAS  PubMed  Google Scholar 

  8. Dogi CA, Galdeano CM, Perdigon G (2008) Gut immune stimulation by non pathogenic Gram(+) and Gram(−) bacteria. Comparison with a probiotic strain. Cytokine 41:223–231

    Article  CAS  PubMed  Google Scholar 

  9. Lecuit M (2007) Human listeriosis and animal models. Microbes Infect 9:1216–1225

    Article  CAS  PubMed  Google Scholar 

  10. Leenen PJ, Canono BP, Drevets DA, Voerman JS, Campbell PA (1994) TNF-alpha and IFN-gamma stimulate a macrophage precursor cell line to kill Listeria monocytogenes in a nitric oxide-independent manner. J Immunol 153:5141–5147

    CAS  PubMed  Google Scholar 

  11. Moura LN, Neumann E, Vieira LQ, Nicoli JR (2001) Protection by Lactobacillus acidophilus UFV-H2b20 against experimental oral infection with Salmonella enterica subsp. I ser. Typhimurium in gnotobiotic and conventional mice. Braz J Microbiol 32:66–69

    Article  Google Scholar 

  12. Pleasants JR (1974) Gnotobiotics. In: Melby EC, Altman NH (eds) Handbook of laboratory animal science. CRC Press, Cleveland, pp 119–174

    Google Scholar 

  13. Padgett EL, Pruett SB (1992) Evaluation of nitrite production by human monocyte-derived macrophages. Biochem Biophys Res Commun 186:775–781

    Article  CAS  PubMed  Google Scholar 

  14. Bernet-Camard MF, Lievin V, Brassart D, Neeser JR, Servin AL, Hudault S (1997) The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl Environ Microbiol 63:2747–2753

    CAS  PubMed  Google Scholar 

  15. Bambirra FH, Lima KG, Franco BD, Cara DC, Nardi RM, Barbosa FH, Nicoli JR (2007) Protective effect of Lactobacillus sakei 2a against experimental challenge with Listeria monocytogenes in gnotobiotic mice. Lett Appl Microbiol 45:663–667

    Article  CAS  PubMed  Google Scholar 

  16. Sato K (1984) Enhancement of host resistance against Listeria infection by Lactobacillus casei: role of macrophages. Infect Immun 44:445–451

    CAS  PubMed  Google Scholar 

  17. de Waard R, Garssen J, Bokken GC, Vos JG (2002) Antagonistic activity of Lactobacillus casei strain shirota against gastrointestinal Listeria monocytogenes infection in rats. Int J Food Microbiol 73:93–100

    Article  PubMed  Google Scholar 

  18. Mitsuyama M, Takeya K, Nomoto K, Shimotori S (1978) Three phases of phagocyte contribution to resistance against Listeria monocytogenes. J Gen Microbiol 106:165–171

    CAS  PubMed  Google Scholar 

  19. Veckman V, Miettinen M, Matikainen S, Lande R, Giacomini E, Coccia EM, Julkunen I (2003) Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. J Leukoc Biol 74:395–402

    Article  CAS  PubMed  Google Scholar 

  20. Macpherson AJ, Geuking MB, McCoy KD (2005) Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115:153–162

    Article  CAS  PubMed  Google Scholar 

  21. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  PubMed  Google Scholar 

  22. Mikkelsen HB, Garbarsch C, Tranum-Jensen J, Thuneberg L (2004) Macrophages in the small intestinal muscularis externa of embryos, newborn and adult germ-free mice. J Mol Histol 35:377–387

    Article  CAS  PubMed  Google Scholar 

  23. Inagaki H, Suzuki T, Nomoto K, Yoshikai Y (1996) Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin + CD44 + T cells in sites of inflammation. Infect Immun 64:3280–3287

    CAS  PubMed  Google Scholar 

  24. Ishida-Fujii K, Sato R, Goto S, Yang XP, Kuboki H, Hirano S, Sato M (2007) Prevention of pathogenic Escherichia coli infection in mice and stimulation of macrophage activation in rats by an oral administration of probiotic Lactobacillus casei I-5. Biosci Biotechnol Biochem 71:866–873

    Article  CAS  PubMed  Google Scholar 

  25. Castanheira LG, Castro JM, Martins-Filho OA, Nicoli JR, Vieira LQ, Afonso LC (2007) Lactobacillus delbrueckii as a potential skin adjuvant for induction of type 1 immune responses. Front Biosci 12:1300–1307

    Article  CAS  PubMed  Google Scholar 

  26. Neumann E, Ramos MG, Santos LM, Rodrigues AC, Vieira EC, Afonso LC, Nicoli JR, Vieira LQ (2009) Lactobacillus delbrueckii UFV-H2b20 induces type 1 cytokine production by mouse cells in vitro and in vivo. Braz J Med Biol Res 42:358–367

    Article  CAS  PubMed  Google Scholar 

  27. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  CAS  PubMed  Google Scholar 

  28. Voltan S, Castagliuolo I, Elli M, Longo S, Brun P, D’Inca R, Porzionato A, Macchi V, Palu G, Sturniolo GC, Morelli L, Martines D (2007) Aggregating phenotype in Lactobacillus crispatus determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. Clin Vaccine Immunol 14:1138–1148

    Article  CAS  PubMed  Google Scholar 

  29. Nakane A, Nishikawa S, Sasaki S, Miura T, Asano M, Kohanawa M, Ishiwata K, Minagawa T (1996) Endogenous interleukin-4, but not interleukin-10, is involved in suppression of host resistance against Listeria monocytogenes infection in interferon-depleted mice. Infect Immun 64:1252–1258

    CAS  PubMed  Google Scholar 

  30. Nishikawa S, Miura T, Sasaki S, Nakane A (1996) The protective role of endogenous cytokines in host resistance against an intragastric infection with Listeria monocytogenes in mice. FEMS Immunol Med Microbiol 16:291–298

    Article  CAS  PubMed  Google Scholar 

  31. Samsom JN, Annema A, Geertsma MF, Langermans JA, Groeneveld PH, de HE, van FR (2000) Interleukin-10 has different effects on proliferation of Listeria monocytogenes in livers and spleens of mice. Infect Immun 68:4666–4672

  32. Cong Y, Weaver CT, Lazenby A, Elson CO (2002) Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J Immunol 169:6112–6119

    CAS  PubMed  Google Scholar 

  33. Lavasani S, Dzhambazov B, Nouri M, Fak F, Buske S, Molin G, Thorlacius H, Alenfall J, Jeppsson B, Westrom B (2010) A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One 5:e9009

    Article  PubMed  Google Scholar 

  34. Souza DG, Fagundes CT, Amaral FA, Cisalpino D, Sousa LP, Vieira AT, Pinho V, Nicoli JR, Vieira LQ, Fierro IM, Teixeira MM (2007) The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. J Immunol 179:8533–8543

    CAS  PubMed  Google Scholar 

  35. Campbell DJ, Butcher EC (2002) Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 195:135–141

    Article  CAS  PubMed  Google Scholar 

  36. Guarner F (2006) Enteric flora in health and disease. Digestion 73(Suppl 1):5–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Célia Alencar de Morais for supplying L. delbrueckii UFV-H2b20 and to Antonio Mesquita Vaz for excellent animal care. This work was supported by FAPEMIG grant numbers CBB 2818/97 and 2409/03, and by CNPq grant number 306200/2006-6. LMdosS is a CAPES fellow, RMEA., JRN, and LQV are CNPq fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leda Quercia Vieira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, L.M., Santos, M.M., de Souza Silva, H.P. et al. Monoassociation with probiotic Lactobacillus delbrueckii UFV-H2b20 stimulates the immune system and protects germfree mice against Listeria monocytogenes infection. Med Microbiol Immunol 200, 29–38 (2011). https://doi.org/10.1007/s00430-010-0170-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-010-0170-1

Keywords

Navigation