Skip to main content
Log in

Survival, Intestinal Mucosa Adhesion, and Immunomodulatory Potential of Lactobacillus plantarum Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Survival during transit through the gastrointestinal track, intestinal mucosa adhesion, and a potential immunomodulatory effect of Lactobacillus plantarum strains 2035 and ACA-DC 2640 were investigated in a rat model. According to microbiological and multiplex PCR analysis, both strains were detected in feces 24 h after either single-dose or daily administration for 7 days. Intestinal mucosa adhesion of L. plantarum 2035 was noted in the large intestine at 24 h after single-dose administration, while it was not detected at 48 h. Daily dosing, prolonged detection of the strain up to 48 h post-administration, and expanded adhesion to the small intestine. Adhesion of L. plantarum ACA-DC 2640 to the intestinal mucosa after single-dose administration was prolonged and more extended compared to L. plantarum 2035. Daily dosing increased both the levels and the rate of positive cultures of the strains compared to those of the single-dose scheme. In addition, both strains increased total IgG while decreased IgM and IgA serum levels. In conclusion, L. plantarum 2035 and L. plantarum ACA-DC 2640 survived transit through the gastrointestinal track, exhibited transient distinct adhesion to the intestinal mucosa and modulated the systemic immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al-Saiady MY (2010) Effect of probiotic bacteria on immunoglobulin G concentration and other blood components of newborn calves. J Anim Vet Adv 9:604–609

    Article  CAS  Google Scholar 

  2. Argyri AA, Zoumpopoulou G, Karatzas KA, Tsakalidou E, Nychas GJ, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291

    Article  CAS  PubMed  Google Scholar 

  3. Baillon MLA, Marshall-Jones ZV, Butterwick RF (2004) Effects of probiotic Lactobacillus acidophilus strain DSM13241 in healthy adult dogs. Am J Vet Res 65:338–343

    Article  PubMed  Google Scholar 

  4. Begley M, Gahan CGΜ, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    Article  CAS  PubMed  Google Scholar 

  5. Benyacoub J, Czarnecki-Maulden GL, Cavadini C, Sauthier T, Anderson RE, Schiffrin EJ, Von der Weid T (2003) Supplementation of food with Enterococcus faecium (SF68) stimulates immune functions in young dogs. J Nutr 133:1158–1162

    CAS  PubMed  Google Scholar 

  6. Boylston TD, Vinderola CG, Ghoddusi HB, Reinheimer JA (2004) Incorporation of bifidobacteria into cheeses: challenges and rewards. Int Dairy J 14:375–387

    Article  CAS  Google Scholar 

  7. Butel MJ (2014) Probiotics, gut microbiota and health. Médecine et maladies infectieuses 44:1–8

    Article  PubMed  Google Scholar 

  8. Cai CJ, Cai PP, Hou CL, Zeng XF, Qiao SY (2014) Administration of Lactobacillus fermentum I5007 to young piglets improved their health and growth. J Anim Feed Sci 23:222–227

    Article  Google Scholar 

  9. Duan J-L, He S-P, Yang G, Yin J, Ren W-K, Deng J-W, Gong Y, Chen F-M, Li T-J, Huang X-G (2014) Effect of Lactobacillus delbrueckii on jejunum innate immune-related gene expression in mice. J Anim Vet Adv 13:989–997

    Google Scholar 

  10. Galanis A, Kourkoutas Y, Tassou CC, Chorianopoulos N (2015) Detection and identification of probiotic Lactobacillus plantarum strains by multiplex PCR using RAPD-derived primers. Int J Mol Sci 16:25141–25153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gardiner GE, Heinemann C, Baroja ML, Bruce AW, Beuerman D, Madrenas J, Reid G (2002) Oral administration of the probiotic combination Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 for human intestinal applications. Int Dairy J 12:191–196

    Article  CAS  Google Scholar 

  12. Gueimonde M, Jalonen L, He F, Hiramatsu M, Salminen S (2006) Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Res Int 39:467–471

    Article  CAS  Google Scholar 

  13. Jensen H, Grimmer S, Naterstad K, Axelsson L (2012) In vitro testing of commercial and potential probiotic lactic acid bacteria. Int J Food Microbiol 153:216–222

    Article  PubMed  Google Scholar 

  14. Kang HJ, Im SH (2015) Probiotics as an immune modulator. J Nutr Sci Vitaminol 61:S103–S105

    Article  CAS  PubMed  Google Scholar 

  15. Kim HS, Park H, Cho IY, Paik HD, Park E (2006) Dietary supplementation of probiotic Bacillus polyfermenticus, Bispan strain, modulates natural killer cell and T cell subset populations and immunoglobulin G levels in human subjects. J Med Food 9:321–327

    Article  CAS  PubMed  Google Scholar 

  16. Kos B, Susković J, Vuković S, Simpraga M, Frece J, Matosić S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987

    Article  CAS  PubMed  Google Scholar 

  17. Kotzamanidis C, Kourelis A, Litopoulou E, Tzanetakis N, Yiangou M (2010) Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int J Food Microbiol 140:154–163

    Article  CAS  PubMed  Google Scholar 

  18. Kourelis A, Kotzamanidis C, Litopoulou-Tzanetaki E, Papaconstantinou J, Tzanetakis N, Yiangou M (2010) Immunostimulatory activity of potential probiotic yeast strains in the dorsal air pouch system and the gut mucosa. J Appl Microbiol 109:260–271

    CAS  PubMed  Google Scholar 

  19. Lähteinen T, Lindholm A, Rinttilä T, Junnikkala S, Kant R, Pietilä TE, Levonen K, von Ossowski I, Solano-Aguilar G, Jakava-Viljanen M, Palva A (2014) Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets. Vet Immunol Immunopathol 158:14–25

    Article  PubMed  Google Scholar 

  20. Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoudi I, Moussa OB, Khaldi TM, Kebouchi M, Soligot C, Le Roux Y, Hassouna M (2016) Functional in vitro screening of Lactobacillus strains isolated from Tunisian camel raw milk toward their selection as probiotic. Small Ruminant Res 137:91–98

    Article  Google Scholar 

  22. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199

    Article  CAS  Google Scholar 

  23. Maragkoudakis PA, Mountzouris KC, Rosu C, Zoumpopoulou G, Papadimitriou K, Dalaka E, Hadjipetrou A, Theofanous G, Strozzi GP, Carlini N, Zervas G, Tsakalidou E (2010) Feed supplementation of Lactobacillus plantarum PCA 236 modulates gut microbiota and milk fatty acid composition in dairy goats - a preliminary study. Int J Food Microbiol 141:S109–S116

    Article  CAS  PubMed  Google Scholar 

  24. Ohland CL, MacNaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol-Gastrointest Liver Physiol 298:G807–G819

    Article  CAS  PubMed  Google Scholar 

  25. Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Bruno P, Tsakalidou E (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol. doi:10.3389/fmicb.2015.00058

    PubMed  PubMed Central  Google Scholar 

  26. Ranadheera CS, Evans CA, Adams MC, Baines SK (2014) Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion. J Funct Foods 8:18–25

    Article  CAS  Google Scholar 

  27. Saxami G, Ypsilantis P, Sidira M, Simopoulos C, Kourkoutas Y, Galanis A (2012) Distinct adhesion of probiotic strain Lactobacillus casei ATCC 393 to rat intestinal mucosa. Anaerobe 18:417–420

    Article  CAS  PubMed  Google Scholar 

  28. Saxami G, Karapetsas A, Lamprianidou E, Kotsianidis I, Chlichlia A, Tassou CC, Zoumpourlis V, Galanis A (2016) Two potential probiotic lactobacillus strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines. J Funct Foods 24:461–471

    Article  CAS  Google Scholar 

  29. Scharek L, Guth J, Filter M, Schmidt MFG (2007) Impact of the probiotic bacteria Enterococcus faecium NCIMB 10415 (SF68) and Bacillus cereus var. toyoi NCIMB 40112 on the development of serum IgG and faecal IgA of sows and their piglets. Arch Anim Nutr 61:223–234

    Article  CAS  PubMed  Google Scholar 

  30. Shi L, Li M, Miyazawa K, Li Y, Hiramatsu M, Xu J, Gong C, Jing X, He F, Huang C (2013) Effects of heat-inactivated Lactobacillus gasseri TMC0356 on metabolic characteristics and immunity of rats with the metabolic syndrome. Br J Nutr 109:263–272

    Article  CAS  PubMed  Google Scholar 

  31. Sidira M, Galanis A, Ypsilantis P, Karapetsas A, Progaki Z, Simopoulos C, Kourkoutas Y (2010) Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora. J Mol Microbiol Biotechnol 19:224–230

    Article  CAS  PubMed  Google Scholar 

  32. Sidira M, Kourkoutas Y, Kanellaki M, Charalampopoulos D (2015) In vitro study on the cell adhesion ability of immobilized lactobacilli on natural supports. Food Res Int 76:532–539

    Article  CAS  PubMed  Google Scholar 

  33. Sierra S, Lara-Villoslada F, Sempere L, Olivares M, Boza J, Xaus J (2010) Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 16:195–200

    Article  PubMed  Google Scholar 

  34. Sun P, Wang J, Jiang Y (2010) Effects of Enterococcus faecium (SF68) on immune function in mice. Food Chem 123:63–68

    Article  CAS  Google Scholar 

  35. Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, Saxami G, Ypsilantis P, Lampri ES, Simopoulos C, Kotsianidis I, Galanis A, Kourkoutas Y, Dimitrellou D, Chlichlia K (2016) Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE 11:e0147960

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tuo Y, Zhang W, Zhang L, Ai L, Zhang Y, Han X, Yi H (2013) Study of probiotic potential of four wild Lactobacillus rhamnosus strains. Anaerobe 21:22–27

    Article  CAS  PubMed  Google Scholar 

  37. Tuomola E, Crittenden R, Playne M, Isolauri E, Salminen S (2001) Quality assurance criteria for probiotic bacteria. Am J Clin Nutr 73:393S–398S

    CAS  PubMed  Google Scholar 

  38. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang S-P, Yang L, Tang X-S, Cai L-C, Liu G, Kong X-F, Blachier F, Yin Y-L (2011) Dietary supplementation with high-dose Bacillus subtilis or Lactobacillus reuteri modulates cellular and humoral immunities and improves performance in weaned piglets. J Food Agric Environ 9:181–187

    Google Scholar 

  40. Zoumpopoulou G, Foligne B, Christodoulou K, Grangette C, Pot B, Tsakalidou E (2008) Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. Int J Food Microbiol 121:18–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Assistant Professor A. Galanis for his valuable technical support and scientific advice on molecular analysis.

Funding

The present research project was co-financed by the European Union (European Regional Development Fund–ERDF) and Greek national funds through the Operational Program “National Action “COOPERATION 2011—Partnerships of Production and Research Institutions in Focused Research and Technology Sectors” (Project Nr. 11SYN_2_571- ProbioDairyMeat).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Ypsilantis.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical Approval

The experimental protocol was approved by the Animal Care and Use Committee of the local Veterinary Service since it was in accordance with the requirements set by PD 160/91, which complied with Directive 2010/63/EU, which was the legislation in force at the time of experimentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santarmaki, V., Kourkoutas, Y., Zoumpopoulou, G. et al. Survival, Intestinal Mucosa Adhesion, and Immunomodulatory Potential of Lactobacillus plantarum Strains. Curr Microbiol 74, 1061–1067 (2017). https://doi.org/10.1007/s00284-017-1285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1285-z

Navigation