Skip to main content
Log in

Apoptosis in infectious disease: how bacteria interfere with the apoptotic apparatus

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Cell death by apoptosis is a common response of a human cell to many extrinsic stimuli. A cell’s sensitivity to apoptotic triggers is affected by its activation and differentiation status. Bacteria are recognised by cellular receptors and elicit a multitude of signal transduction events that can, among other effects, alter the cell’s response towards apoptotic stimuli. Many different bacteria and bacterial products have been recognised as agents that can act in this way and either induce or inhibit cell death. Besides these common and, as we argue, indirect activities, chlamydiae have been described to have a more specific capacity. These specialists of intracellular life can directly attack the host cell’s apoptotic pathway. Here, we will attempt to structure the field of bacterial inhibition of apoptosis and discuss recent advancements in our knowledge of how chlamydiae interfere with the host cell’s capacity to undergo apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260

    Article  PubMed  Google Scholar 

  2. Wajant H (2003) Death receptors. Essays Biochem 39:53–71

    PubMed  Google Scholar 

  3. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    PubMed  Google Scholar 

  4. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  PubMed  Google Scholar 

  5. Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GS (2004) Activation of caspases-8 and—10 by FLIP(L). Biochem J 382:651–657

    Article  PubMed  Google Scholar 

  6. Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66

    Article  PubMed  Google Scholar 

  7. Bouillet P, Strasser A (2002) BH3-only proteins—evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 115:1567–1574

    PubMed  Google Scholar 

  8. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286:1735–1738

    Article  PubMed  Google Scholar 

  9. Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J, Marrack P (2002) Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16:759–767

    Article  PubMed  Google Scholar 

  10. Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19:3325–3336

    Article  PubMed  Google Scholar 

  11. Ruckdeschel K, Pfaffinger G, Haase R, Sing A, Weighardt H, Hacker G, Holzmann B, Heesemann J (2004) Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 173:3320–3328

    PubMed  Google Scholar 

  12. Fischer SF, Rehm M, Bauer A, Hofling F, Kirschnek S, Rutz M, Bauer S, Wagner H, Hacker G (2005) Toll-like receptor 9 signaling can sensitize fibroblasts for apoptosis. Immunol Lett 97:115–122

    Article  PubMed  Google Scholar 

  13. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743–748

    PubMed  Google Scholar 

  14. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    PubMed  Google Scholar 

  15. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376:167–170

    Article  PubMed  Google Scholar 

  16. Makris C, Godfrey VL, Krahn-Senftleben G, Takahashi T, Roberts JL, Schwarz T, Feng L, Johnson RS, Karin M (2000) Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 5:969–979

    Article  PubMed  Google Scholar 

  17. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM (1999) Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284:321–325

    Article  PubMed  Google Scholar 

  18. Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21:3964–3973

    Article  PubMed  Google Scholar 

  19. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305

    Article  PubMed  Google Scholar 

  20. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  PubMed  Google Scholar 

  21. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288

    Article  PubMed  Google Scholar 

  22. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80:2012–2020

    PubMed  Google Scholar 

  23. Yamamoto C, Yoshida S, Taniguchi H, Qin MH, Miyamoto H, Mizuguchi Y (1993) Lipopolysaccharide and granulocyte colony-stimulating factor delay neutrophil apoptosis and ingestion by guinea pig macrophages. Infect Immun 61:1972–1979

    PubMed  Google Scholar 

  24. Yoshiie K, Kim HY, Mott J, Rikihisa Y (2000) Intracellular infection by the human granulocytic ehrlichiosis agent inhibits human neutrophil apoptosis. Infect Immun 68:1125–1133

    Article  PubMed  Google Scholar 

  25. Kim JS, Kim JM, Jung HC, Song IS, Kim CY (2001) Inhibition of apoptosis in human neutrophils by Helicobacter pylori water-soluble surface proteins. Scand J Gastroenterol 36:589–600

    Article  PubMed  Google Scholar 

  26. Ozaki K, Hanazawa S (2001) Porphyromonas gingivalis fimbriae inhibit caspase-3-mediated apoptosis of monocytic THP-1 cells under growth factor deprivation via extracellular signal-regulated kinase-dependent expression of p21 Cip/WAF1. Infect Immun 69:4944–4950

    Article  PubMed  Google Scholar 

  27. Feterowski C, Weighardt H, Emmanuilidis K, Hartung T, Holzmann B (2001) Immune protection against septic peritonitis in endotoxin-primed mice is related to reduced neutrophil apoptosis. Eur J Immunol 31:1268–1277

    Article  PubMed  Google Scholar 

  28. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736–739

    Article  PubMed  Google Scholar 

  29. Ruckdeschel K, Harb S, Roggenkamp A, Hornef M, Zumbihl R, Kohler S, Heesemann J, Rouot B (1998) Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J Exp Med 187:1069–1079

    Article  PubMed  Google Scholar 

  30. Binnicker MJ, Williams RD, Apicella MA (2004) Gonococcal porin IB activates NF-kappaB in human urethral epithelium and increases the expression of host antiapoptotic factors. Infect Immun 72:6408–6417

    Article  PubMed  Google Scholar 

  31. Clifton DR, Goss RA, Sahni SK, van Antwerp D, Baggs RB, Marder VJ, Silverman DJ, Sporn LA (1998) NF-kappa B-dependent inhibition of apoptosis is essential for host cellsurvival during Rickettsia rickettsii infection. Proc Natl Acad Sci USA 95:4646–4651

    Article  PubMed  Google Scholar 

  32. Joshi SG, Francis CW, Silverman DJ, Sahni SK (2003) Nuclear factor kappa B protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity. Infect Immun 71:4127–4136

    Article  PubMed  Google Scholar 

  33. Joshi SG, Francis CW, Silverman DJ, Sahni SK (2004) NF-kappaB activation suppresses host cell apoptosis during Rickettsia rickettsii infection via regulatory effects on intracellular localization or levels of apoptogenic and anti-apoptotic proteins. FEMS Microbiol Lett 234:333–341

    Article  PubMed  Google Scholar 

  34. Kempf VA, Schairer A, Neumann D, Grassl GA, Lauber K, Lebiedziejewski M, Schaller M, Kyme P, Wesselborg S, Autenrieth IB (2005) Bartonella henselae inhibits apoptosis in Mono Mac 6 cells. Cell Microbiol 7:91–104

    Article  PubMed  Google Scholar 

  35. Schmid MC, Schulein R, Dehio M, Denecker G, Carena I, Dehio C (2004) The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol 52:81–92

    Article  PubMed  Google Scholar 

  36. Wahl C, Oswald F, Simnacher U, Weiss S, Marre R, Essig A (2001) Survival of Chlamydia pneumoniae-infected Mono Mac 6 cells is dependent on NF-kappaB binding activity. Infect Immun 69:7039–7045

    Article  PubMed  Google Scholar 

  37. Fischer SF, Schwarz C, Vier J, Hacker G (2001) Characterization of antiapoptotic activities of Chlamydia pneumoniae in human cells. Infect Immun 69:7121–7129

    Article  PubMed  Google Scholar 

  38. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  PubMed  Google Scholar 

  39. Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1:533–540

    Article  PubMed  Google Scholar 

  40. Strassheim D, Asehnoune K, Park JS, Kim JY, He Q, Richter D, Kuhn K, Mitra S, Abraham E (2004) Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J Immunol 172:5727–5733

    PubMed  Google Scholar 

  41. Yilmaz O, Jungas T, Verbeke P, Ojcius DM (2004) Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun 72:3743–3751

    Article  PubMed  Google Scholar 

  42. Knodler LA, Finlay BB, Steele-Mortimer O (2005) The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem 280(10):9058–9064

    Article  PubMed  Google Scholar 

  43. Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71:1739–1746

    PubMed  Google Scholar 

  44. Xu XN, Screaton GR, McMichael AJ (2001) Virus infections: escape, resistance, and counterattack. Immunity 15:867–870

    Article  PubMed  Google Scholar 

  45. Prebeck S, Kirschning C, Durr S, da Costa C, Donath B, Brand K, Redecke V, Wagner H, Miethke T (2001) Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 167:3316–3323

    PubMed  Google Scholar 

  46. Byrne GI, Ojcius DM (2004) Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2:802–808

    Article  PubMed  Google Scholar 

  47. Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, Cohen MS, Harris KM, Udry JR (2004) Prevalence of chlamydial and gonococcal infections among young adults in the United States. Jama 291:2229–2236

    Article  PubMed  Google Scholar 

  48. Thylefors B, Negre AD, Pararajasegaram R, Dadzie KY (2005) Global data on blindness. Bull World Health Organ 73:115

    Google Scholar 

  49. Kuo CC, Jackson LA, Campbell LA, Grayston JT (1995) Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8:451–461

    PubMed  Google Scholar 

  50. Greene W, Xiao Y, Huang Y, McClarty G, Zhong G (2004) Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect Immun 72:451–460

    Article  PubMed  Google Scholar 

  51. Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G (1998) Inhibition of Apoptosis in Chlamydia-infected Cells: Blockade of Mitochondrial Cytochrome c Release and Caspase Activation. J Exp Med 187:487–496

    Article  PubMed  Google Scholar 

  52. Rajalingam K, Al Younes H, Muller A, Meyer TF, Szczepek AJ, Rudel T (2001) Epithelial cells infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) are resistant to apoptosis. Infect Immun 69:7880–7888

    Article  PubMed  Google Scholar 

  53. Dean D, Powers VC (2001) Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect Immun 69:2442–2447

    Article  PubMed  Google Scholar 

  54. Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell H (2002) The role of IFN-gamma in the outcome of chlamydial infection. Curr Opin Immunol 14:444–451

    Article  PubMed  Google Scholar 

  55. Al-Younes HM, Rudel T, Brinkmann V, Szczepek AJ, Meyer TF (2001) Low iron availability modulates the course of Chlamydia pneumoniae infection. Cell Microbiol 3:427–437

    Article  PubMed  Google Scholar 

  56. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  Google Scholar 

  57. Coultas L, Bouillet P, Stanley EG, Brodnicki TC, Adams JM, Strasser A (2004) Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol Cell Biol 24:1570–1581

    Article  PubMed  Google Scholar 

  58. Xiao Y, Zhong Y, Greene W, Dong F, Zhong G (2004) Chlamydia trachomatis infection inhibits both Bax and Bak activation induced by staurosporine. Infect Immun 72:5470–5474

    Article  PubMed  Google Scholar 

  59. Fischer SF, Vier J, Kirschnek S, Klos A, Hess S, Ying S, Hacker G (2004) Chlamydia Inhibit Host Cell Apoptosis by Degradation of Proapoptotic BH3-only Proteins. J Exp Med 200:905–916

    Article  PubMed  Google Scholar 

  60. Ying S, Seiffert BM, Hacker G, Fischer SF (2005) Broad degradation of BH3-only proteins during infection with Chlamydia trachomatis. Infect Immun (In press)

  61. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D (1999) Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96:625–634

    Article  PubMed  Google Scholar 

  62. Fischer SF, Harlander T, Vier J, Hacker G (2004) Protection against CD95-induced apoptosis by chlamydial infection at a mitochondrial step. Infect Immun 72:1107–1115

    Article  PubMed  Google Scholar 

  63. Fields KA, Mead DJ, Dooley CA, Hackstadt T (2003) Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol Microbiol 48:671–683

    Article  PubMed  Google Scholar 

  64. Zhong G, Fan P, Ji H, Dong F, Huang Y (2001) Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193:935–942

    Article  PubMed  Google Scholar 

  65. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  Google Scholar 

  66. Hoyt MA, Coffino P (2004) Ubiquitin-free routes into the proteasome. Cell Mol Life Sci 61:1596–1600

    Article  PubMed  Google Scholar 

  67. Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49(Pt 2):415–440

    PubMed  Google Scholar 

  68. Friedman MG, Dvoskin B, Kahane S (2003) Infections with the chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. Microbes Infect 5:1013–1021

    Article  PubMed  Google Scholar 

  69. Amann R, Springer N, Schonhuber W, Ludwig W, Schmid EN, Muller KD, Michel R (1997) Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63:115–121

    PubMed  Google Scholar 

  70. Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, Brandt P, Nyakatura GJ, Droege M, Frishman D, Rattei T, Mewes HW, Wagner M (2004) Illuminating the evolutionary history of chlamydiae. Science 304:728–730

    Article  PubMed  Google Scholar 

  71. Ojcius DM, Souque P, Perfettini JL, Dautry-Varsat A (1998) Apoptosis of epithelial cells and macrophages due to infection with the obligate intracellular pathogen Chlamydia psittaci. J Immunol 161:4220–4226

    PubMed  Google Scholar 

  72. Perfettini JL, Reed JC, Israel N, Martinou JC, Dautry-Varsat A, Ojcius DM (2002) Role of Bcl-2 family members in caspase-independent apoptosis during Chlamydia infection. Infect Immun 70:55–61

    Article  PubMed  Google Scholar 

  73. Fischer SF, Schwarz C, Vier J, Hacker G (2001) Characterization of Antiapoptotic Activities of Chlamydia pneumoniae in Human Cells. Infect Immun 69:7121–7129

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Häcker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häcker, G., Kirschnek, S. & Fischer, S.F. Apoptosis in infectious disease: how bacteria interfere with the apoptotic apparatus. Med Microbiol Immunol 195, 11–19 (2006). https://doi.org/10.1007/s00430-005-0239-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-005-0239-4

Keywords

Navigation