Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G (2014) Machine learning for neuroimaging with scikit-learn. Front Neuroinform. https://doi.org/10.3389/fninf.2014.00014
Article
PubMed
PubMed Central
Google Scholar
Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19(12):1023–1027. https://doi.org/10.1016/j.cub.2009.04.028
CAS
Article
PubMed
PubMed Central
Google Scholar
Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight J 2:1–35
Google Scholar
Bazin P-L, Weiss M, Dinse J, Schäfer A, Trampel R, Turner R (2014) A computational framework for ultra-high resolution cortical segmentation at 7Tesla. Neuroimage 93:201–209. https://doi.org/10.1016/j.neuroimage.2013.03.077
Article
PubMed
Google Scholar
Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for bold and perfusion based fMRI. Neuroimage 37(1):90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042
Article
PubMed
Google Scholar
Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8(9):1148–1150. https://doi.org/10.1038/nn1516
CAS
Article
PubMed
Google Scholar
Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34(4):537–541. https://doi.org/10.1002/mrm.1910340409
CAS
Article
PubMed
Google Scholar
Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7(1):113–140. https://doi.org/10.1146/annurev-clinpsy-040510-143934
Article
PubMed
Google Scholar
Carey JR, Bhatt E, Nagpal A (2005) Neuroplasticity promoted by task complexity. Exerc Sport Sci Rev 33(1):24–31
PubMed
Google Scholar
Coynel D, Marrelec G, Perlbarg V, Pélégrini-Issac M, Van de Moortele P-F, Ugurbil K, Doyon J, Benali H, Lehéricy S (2010) Dynamics of motor-related functional integration during motor sequence learning. Neuroimage 49(1):759–766. https://doi.org/10.1016/j.neuroimage.2009.08.048
Article
PubMed
Google Scholar
Cusack R, Brett M, Osswald K (2003) An evaluation of the use of magnetic field maps to undistort echo-planar images. Neuroimage 18(1):127–142. https://doi.org/10.1006/nimg.2002.1281
Article
PubMed
Google Scholar
Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454. https://doi.org/10.1016/j.neuron.2011.10.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15(2):161–167. https://doi.org/10.1016/j.conb.2005.03.004
CAS
Article
PubMed
Google Scholar
Doyon J, Gabitov E, Vahdat S, Lungu O, Boutin A (2018) Current issues related to motor sequence learning in humans. Curr Opin Behav Sci 20:89–97. https://doi.org/10.1016/j.cobeha.2017.11.012
Article
Google Scholar
Elsinger CL, Harrington DL, Rao SM (2006) From preparation to online control: reappraisal of neural circuitry mediating internally generated and externally guided actions. Neuroimage 31(3):1177–1187. https://doi.org/10.1016/j.neuroimage.2006.01.041
CAS
Article
PubMed
Google Scholar
Gaymard B, Pierrot-Deseilligny C, Rivaud S (1990) Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Ann Neurol 28(5):622–626. https://doi.org/10.1002/ana.410280504
CAS
Article
PubMed
Google Scholar
Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1997) Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120:1587–1602. https://doi.org/10.1093/brain/120.9.1587 (Pt 9)
Article
PubMed
Google Scholar
Gorgolewski KJ, Esteban O, Burns C, Ziegler E, Pinsard B, Madison C, Waskom M, Ellis DG, Clark D, Dayan M, Manhães-Savio A, Notter MP, Johnson H, Dewey BE, Halchenko YO, Hamalainen C, Keshavan A, Clark D, Huntenburg JM, Ghosh S (2016) Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python 0.12.0-rc1. Zenodo. https://doi.org/10.5281/zenodo.50186
Grafton ST, Hazeltine E, Ivry RB (1998) Abstract and effector-specific representations of motor sequences identified with PET. J Neurosci 18(22):9420–9428. https://doi.org/10.1523/JNEUROSCI.18-22-09420.1998
CAS
Article
PubMed
PubMed Central
Google Scholar
Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand. Exp Brain Res 146(3):369–378. https://doi.org/10.1007/s00221-002-1181-y
Article
PubMed
Google Scholar
Gregory MD, Agam Y, Selvadurai C, Nagy A, Vangel M, Tucker M, Robertson EM, Stickgold R, Manoach DS (2014) Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance. Neuroimage 102(02):666–673. https://doi.org/10.1016/j.neuroimage.2014.08.044
Article
PubMed
Google Scholar
Gryga M, Taubert M, Dukart J, Vollmann H, Conde V, Sehm B, Villringer A, Ragert P (2012) Bidirectional gray matter changes after complex motor skill learning. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2012.00037
Article
PubMed
PubMed Central
Google Scholar
Guerra-Carrillo B, Mackey AP, Bunge SA (2014) Resting-state fMRI: a window into human brain plasticity. Neuroscientist 20(5):522–533. https://doi.org/10.1177/1073858414524442
Article
PubMed
Google Scholar
Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297. https://doi.org/10.1016/j.neuroimage.2012.11.020
Article
PubMed
Google Scholar
Hazeltine E (2001) Ipsilateral sensorimotor regions and motor sequence learning. Trends Cogn Sci 5(7):281–282. https://doi.org/10.1016/S1364-6613(00)01702-2
CAS
Article
PubMed
Google Scholar
Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22(10):464–471
CAS
Article
Google Scholar
Jenkins I, Brooks D, Nixon P, Frackowiak R, Passingham R (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14(6):3775–3790. https://doi.org/10.1523/JNEUROSCI.14-06-03775.1994
CAS
Article
PubMed
PubMed Central
Google Scholar
Jenkinson M (2004) Improving the registration of B0- distorted EPI images using calculated cost function weights. 10th International Conference on Functional Mapping of the Human Brain
Karim HT, Huppert TJ, Erickson KI, Wollam ME, Sparto PJ, Sejdić E, VanSwearingen JM (2017) Motor sequence learning-induced neural efficiency in functional brain connectivity. Behav Brain Res 319:87–95. https://doi.org/10.1016/j.bbr.2016.11.021
Article
PubMed
Google Scholar
Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM (2019) Motor learning. Compr Physiol 9(2):613–663. https://doi.org/10.1002/cphy.c170043
Article
PubMed
PubMed Central
Google Scholar
Lacourse MG, Orr ELR, Cramer SC, Cohen MJ (2005) Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27(3):505–519. https://doi.org/10.1016/j.neuroimage.2005.04.025
Article
PubMed
Google Scholar
Lee D, Quessy S (2003) Activity in the supplementary motor area related to learning and performance during a sequential visuomotor task. J Neurophysiol 89(2):1039–1056. https://doi.org/10.1152/jn.00638.2002
Article
PubMed
Google Scholar
Lenth R, Singmann H, Love J, Buerkner P, Herve M (2018) Emmeans: estimated marginal means, aka least-squares means. R Package Version 1(1):3
Google Scholar
Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci 106(41):17558–17563. https://doi.org/10.1073/pnas.0902455106
Article
PubMed
PubMed Central
Google Scholar
Lin (Janice) C-H, Chiang M-C, Wu AD, Iacoboni M, Udompholkul P, Yazdanshenas O, Knowlton BJ (2012) Age related differences in the neural substrates of motor sequence learning after interleaved and repetitive practice. Neuroimage 62(3):2007–2020. https://doi.org/10.1016/j.neuroimage.2012.05.015
Article
Google Scholar
Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5(4):e10232. https://doi.org/10.1371/journal.pone.0010232
CAS
Article
PubMed
PubMed Central
Google Scholar
Lohse KR, Wadden K, Boyd LA, Hodges NJ (2014) Motor skill acquisition across short and long time scales: a meta-analysis of neuroimaging data. Neuropsychologia 59:130–141. https://doi.org/10.1016/j.neuropsychologia.2014.05.001
CAS
Article
PubMed
Google Scholar
Ma L, Narayana S, Robin DA, Fox PT, Xiong J (2011) Changes occur in resting state network of motor system during 4 weeks of motor skill learning. Neuroimage 58(1):226–233. https://doi.org/10.1016/j.neuroimage.2011.06.014
Article
PubMed
Google Scholar
Mallol R, Barrós-Loscertales A, López M, Belloch V, Parcet MA, Ávila C (2007) Compensatory cortical mechanisms in Parkinson’s disease evidenced with fMRI during the performance of pre-learned sequential movements. Brain Res 1147:265–271. https://doi.org/10.1016/j.brainres.2007.02.046
CAS
Article
PubMed
Google Scholar
Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49(2):1271–1281. https://doi.org/10.1016/j.neuroimage.2009.10.002
Article
PubMed
Google Scholar
Mary A, Wens V, Op de Beeck M, Leproult R, De Tiège X, Peigneux P (2017) Resting-state functional connectivity is an age-dependent predictor of motor learning abilities. Cereb Cortex (new York, NY) 27(10):4923–4932. https://doi.org/10.1093/cercor/bhw286
Article
Google Scholar
Müller R-A, Kleinhans N, Pierce K, Kemmotsu N, Courchesne E (2002) Functional MRI of motor sequence acquisition: effects of learning stage and performance. Cogn Brain Res 14(2):277–293. https://doi.org/10.1016/S0926-6410(02)00131-3
Article
Google Scholar
Mushiake H, Inase M, Tanji J (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J Neurophysiol 66(3):705–718. https://doi.org/10.1152/jn.1991.66.3.705
CAS
Article
PubMed
Google Scholar
Mutha PK, Sainburg RL, Haaland KY (2011) Left parietal regions are critical for adaptive visuomotor control. J Neurosci 31(19):6972–6981. https://doi.org/10.1523/JNEUROSCI.6432-10.2011
CAS
Article
PubMed
PubMed Central
Google Scholar
Narayana S, Laird AR, Tandon N, Franklin C, Lancaster JL, Fox PT (2012) Electrophysiological and functional connectivity of the human supplementary motor area. Neuroimage 62(1):250–265. https://doi.org/10.1016/j.neuroimage.2012.04.060
Article
PubMed
Google Scholar
Oullier O, Jantzen KJ, Steinberg FL, Kelso JAS (2005) Neural substrates of real and imagined sensorimotor coordination. Cereb Cortex 15(7):975–985. https://doi.org/10.1093/cercor/bhh198
CAS
Article
PubMed
Google Scholar
Penhune VB, Steele CJ (2012) Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res 226(2):579–591. https://doi.org/10.1016/j.bbr.2011.09.044
Article
PubMed
Google Scholar
Poldrack R, Mumford J, Nichols T (2011) Handbook of functional MRI data analysis. Cambridge University Press, Cambridge
Book
Google Scholar
Roche A (2011) A four-dimensional registration algorithm with application to joint correction of motion and slice timing in fMRI. IEEE Trans Med Imaging 30(8):1546–1554. https://doi.org/10.1109/TMI.2011.2131152
Article
PubMed
Google Scholar
Rosenbaum DA, Kenny SB, Derr MA (1983) Hierarchical control of rapid movement sequences. J Exp Psychol 9(1):86–102
CAS
Google Scholar
Säfström D, Domellöf E (2018) Brain activations supporting linking of action phases in a sequential manual task. Neuroimage 172:608–619. https://doi.org/10.1016/j.neuroimage.2018.02.014
Article
PubMed
Google Scholar
Sami S, Miall RC (2013) Graph network analysis of immediate motor-learning induced changes in resting state BOLD. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2013.00166
Article
PubMed
PubMed Central
Google Scholar
Sami S, Robertson EM, Miall RC (2014) The time course of task-specific memory consolidation effects in resting state networks. J Neurosci 34(11):3982–3992. https://doi.org/10.1523/JNEUROSCI.4341-13.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371. https://doi.org/10.1038/nn.2412
CAS
Article
PubMed
PubMed Central
Google Scholar
Seidler RD, Purushotham A, Kim S-G, Uğurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning. Science 296(5575):2043–2046. https://doi.org/10.1126/science.1068524
CAS
Article
PubMed
Google Scholar
Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M, Fukuyama H, Asato R, Konishi J (1993) Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 116(6):1387–1398. https://doi.org/10.1093/brain/116.6.1387
Article
PubMed
Google Scholar
Shima K, Tanji J (2000) Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J Neurophysiol 84(4):2148–2160. https://doi.org/10.1152/jn.2000.84.4.2148
CAS
Article
PubMed
Google Scholar
Singmann H, Bolker B, Westfall J, Aust F (2018) afex: analysis of factorial experiments. R package version 0.20-2
Steel A, Thomas C, Trefler A, Chen G, Baker CI (2019) Finding the baby in the bath water—evidence for task-specific changes in resting state functional connectivity evoked by training. Neuroimage 188:524–538. https://doi.org/10.1016/j.neuroimage.2018.12.038
Article
PubMed
Google Scholar
Steele CJ, Penhune VB (2010) Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. J Neurosci 30(24):8332–8341. https://doi.org/10.1523/JNEUROSCI.5569-09.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
Tanaka S, Honda M, Hanakawa T, Cohen LG (2010) Differential contribution of the supplementary motor area to stabilization of a procedural motor skill acquired through different practice schedules. Cereb Cortex (new York, NY) 20(9):2114–2121. https://doi.org/10.1093/cercor/bhp276
Article
Google Scholar
Tanji J, Shima K (1994) Role for supplementary motor area cells in planning several movements ahead. Nature 371(6496):413–416. https://doi.org/10.1038/371413a0
CAS
Article
PubMed
Google Scholar
Taubert M, Villringer A, Ragert P (2012) Learning-related gray and white matter changes in humans: an update. Neuroscientist 18(4):320–325. https://doi.org/10.1177/1073858411419048
Article
PubMed
Google Scholar
Thomas C, Baker CI (2013) Teaching an adult brain new tricks: a critical review of evidence for training-dependent structural plasticity in humans. Neuroimage 73:225–236. https://doi.org/10.1016/j.neuroimage.2012.03.069
Article
PubMed
Google Scholar
Vahdat S, Darainy M, Milner TE, Ostry DJ (2011) Functionally specific changes in resting-state sensorimotor networks following motor learning. J Neurosci 31(47):16907–16915. https://doi.org/10.1523/JNEUROSCI.2737-11.2011
CAS
Article
PubMed
PubMed Central
Google Scholar
van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE (1998) Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol 80(4):2177–2199. https://doi.org/10.1152/jn.1998.80.4.2177
Article
PubMed
Google Scholar
Vollmann H, Conde V, Sewerin S, Taubert M, Sehm B, Witte OW, Villringer A, Ragert P (2013) Anodal transcranial direct current stimulation (tDCS) over supplementary motor area (SMA) but not pre-SMA promotes short-term visuomotor learning. Brain Stimul 6(2):101–107. https://doi.org/10.1016/j.brs.2012.03.018
Article
PubMed
Google Scholar
Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2010.00016
Article
PubMed
PubMed Central
Google Scholar
Waters S, Wiestler T, Diedrichsen J (2017) Cooperation not competition: bihemispheric tDCS and fMRI show role for ipsilateral hemisphere in motor learning. J Neurosci 37(31):7500–7512. https://doi.org/10.1523/JNEUROSCI.3414-16.2017
CAS
Article
PubMed
PubMed Central
Google Scholar
Wiestler T, Diedrichsen J (2013) Skill learning strengthens cortical representations of motor sequences. Elife 2:e00801. https://doi.org/10.7554/eLife.00801
Article
PubMed
PubMed Central
Google Scholar
Wink AM, de Munck JC, van der Werf YD, van den Heuvel OA, Barkhof F (2012) Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connect 2(5):265–274. https://doi.org/10.1089/brain.2012.0087
Article
PubMed
Google Scholar
Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42(1):343–356. https://doi.org/10.1016/j.neuroimage.2008.04.025
Article
PubMed
Google Scholar
Woo C-W, Krishnan A, Wager TD (2014) Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91:412–419. https://doi.org/10.1016/j.neuroimage.2013.12.058
Article
PubMed
Google Scholar
Wymbs NF, Grafton ST (2015) The human motor system supports sequence-specific representations over multiple training-dependent timescales. Cereb Cortex (new York, NY) 25(11):4213–4225. https://doi.org/10.1093/cercor/bhu144
Article
Google Scholar
Xiong J, Ma L, Wang B, Narayana S, Duff EP, Egan GF, Fox PT (2009) Long-term motor training induced changes in regional cerebral blood flow in both task and resting states. Neuroimage 45(1):75–82. https://doi.org/10.1016/j.neuroimage.2008.11.016
Article
PubMed
Google Scholar
Yokoi A, Diedrichsen J (2019) Neural organization of hierarchical motor sequence representations in the human neocortex. Neuron. https://doi.org/10.1016/j.neuron.2019.06.017
Article
PubMed
Google Scholar
Zuo X-N, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex (new York, NY) 22(8):1862–1875. https://doi.org/10.1093/cercor/bhr269
Article
Google Scholar