Skip to main content
Log in

Dissociable plasticity of visual-motor system in functional specialization and flexibility in expert table tennis players

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Specialization and flexibility are two basic attributes of functional brain organization, enabling efficient cognition and behavior. However, it is largely unknown what plastic changes in specialization and flexibility in visual-motor areas occur in support of extraordinary motor skills in expert athletes and how the selective adaptability of the visual-motor system affects general perceptual or cognitive domains. Here, we used a dynamic network framework to investigate intrinsic functional specialization and flexibility of visual-motor system in expert table tennis players (TTP). Our results showed that sensorimotor areas increased intrinsic functional flexibility, whereas visual areas increased intrinsic functional specialization in expert TTP compared to nonathletes. Moreover, the flexibility of the left putamen was positively correlated with skill level, and that of the left lingual gyrus was positively correlated with behavioral accuracy of a sport-unrelated attention task. This study has uncovered dissociable plasticity of the visual-motor system and their predictions of individual differences in skill level and general attention processing. Furthermore, our time-resolved analytic approach is applicable across other professional athletes for understanding their brain plasticity and superior behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Codes used in this study are available from the corresponding author on request.

References

  • Abernethy B, Russell DG (1987) expert novice differences in an applied selective attention task. J Sport Psychol 9:326–345

    Article  Google Scholar 

  • Abernethy B, Gill DP, Parks SL, Packer ST (2001) Expertise and the perception of kinematic and situational probability information. Perception 30:233–252

    Article  CAS  PubMed  Google Scholar 

  • Ajemian R, D’Ausilio A, Moorman H, Bizzi E (2013) A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits. Proc Natl Acad Sci USA 110:E5078-5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19:1023–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Allen EA et al (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676

    Article  PubMed  Google Scholar 

  • Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220

    Article  CAS  PubMed  Google Scholar 

  • Anderson ML, Kinnison J, Pessoa L (2013) Describing functional diversity of brain regions and brain networks. Neuroimage 73:50–58

    Article  PubMed  Google Scholar 

  • Balser N et al (2014) Prediction of human actions: expertise and task-related effects on neural activation of the action observation network. Hum Brain Mapp 35:4016–4034

    Article  PubMed  PubMed Central  Google Scholar 

  • Barttfeld P et al (2015) Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci USA 112:887–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett DS, Mattar MG (2017) A network neuroscience of human learning: potential to inform quantitative theories of brain and behavior. Trends Cogn Sci 21:250–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassett DS et al (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108:7641–7646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett DS, Yang M, Wymbs NF, Grafton ST (2015) Learning-induced autonomy of sensorimotor systems. Nat Neurosci 18:744–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31:1536–1548

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  • Braun U et al (2015) Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc Natl Acad Sci USA 112:11678–11683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calhoun VD, Miller R, Pearlson G, Adali T (2014) The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84:262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caramazza A, Anzellotti S, Strnad L, Lingnau A (2014) Embodied cognition and mirror neurons: a critical assessment. Annu Rev Neurosci 37:1–15

    Article  CAS  PubMed  Google Scholar 

  • Casey BJ et al (2000) Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proc Natl Acad Sci USA 97:8728–8733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castiello U, Umiltà C (1992) Orienting of attention in volleyball players. Int J Sport Psychol 23:301–310

    Google Scholar 

  • Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a matlab toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    PubMed  PubMed Central  Google Scholar 

  • Chen T, Cai W, Ryali S, Supekar K, Menon V (2016) Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol 14:e1002469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cole MW et al (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coynel D et al (2010) Dynamics of motor-related functional integration during motor sequence learning. Neuroimage 49:759–766

    Article  PubMed  Google Scholar 

  • Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debarnot U, Sperduti M, Di Rienzo F, Guillot A (2014) Experts bodies, experts minds: how physical and mental training shape the brain. Front Hum Neurosci 8:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12:43–56

    Article  CAS  PubMed  Google Scholar 

  • Deco G, Jirsa VK, McIntosh AR (2013) Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci 36:268–274

    Article  CAS  PubMed  Google Scholar 

  • Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95:14529–14534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di X et al (2012) Altered resting brain function and structure in professional badminton players. Brain Connect 2:225–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyon J et al (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 199:61–75

    Article  PubMed  Google Scholar 

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16:143–149

    Article  Google Scholar 

  • Floyer-Lea A, Matthews PM (2004) Changing brain networks for visuomotor control with increased movement automaticity. J Neurophysiol 92:2405–2412

    Article  CAS  PubMed  Google Scholar 

  • Floyer-Lea A, Matthews PM (2005) Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol 94:512–518

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

    Article  CAS  PubMed  Google Scholar 

  • Green CS, Bavelier D (2003) Action video game modifies visual selective attention. Nature 423:534–537

    Article  CAS  PubMed  Google Scholar 

  • Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297

    Article  PubMed  Google Scholar 

  • Huang H et al (2018) Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis. Brain Struct Funct 223:131–144

    Article  PubMed  Google Scholar 

  • Hung TM, Spalding TW, Maria DLS, Hatfield BD (2004) Assessment of reactive motor performance with event-related brain potentials: attention processes in elite table tennis players. J Sport Exercise Psychol 26:317–337

    Article  Google Scholar 

  • Hutchison RM, Morton JB (2015) Tracking the brain’s functional coupling dynamics over development. J Neurosci 35:6849–6859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison RM et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378

    Article  PubMed  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keilholz S, Caballero-Gaudes C, Bandettini P, Deco G, Calhoun V (2017) Time-resolved resting-state functional magnetic resonance imaging analysis: current status, challenges, and new directions. Brain Connect 7:465–481

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilner JM, Lemon RN (2013) What we know currently about mirror neurons. Curr Biol 23:R1057-1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W et al (2014) An fMRI study of differences in brain activity among elite, expert, and novice archers at the moment of optimal aiming. Cogn Behav Neurol 27:173–182

    Article  PubMed  Google Scholar 

  • Kim JH, Han JK, Kim BN, Han DH (2015) Brain networks governing the golf swing in professional golfers. J Sports Sci 33:1980–1987

    Article  PubMed  Google Scholar 

  • Lawrence AD, Sahakian BJ, Robbins TW (1998) Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends Cogn Sci 2:379–388

    Article  CAS  PubMed  Google Scholar 

  • Lehericy S et al (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA 102:12566–12571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Zou Q, He Y, Yang Y (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci USA 110:1929–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, Cao M, Xia M, He Y (2017) Individual differences and time-varying features of modular brain architecture. Neuroimage 152:94–107

    Article  PubMed  Google Scholar 

  • Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132

    Article  CAS  PubMed  Google Scholar 

  • Lynall ME et al (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Narayana S, Robin DA, Fox PT, Xiong J (2011) Changes occur in resting state network of motor system during 4 weeks of motor skill learning. Neuroimage 58:226–233

    Article  PubMed  Google Scholar 

  • Miall RC, Robertson EM (2006) Functional imaging: is the resting brain resting? Curr Biol 16:R998-1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Milton J, Solodkin A, Hlustik P, Small SL (2007) The mind of expert motor performance is cool and focused. Neuroimage 35:804–813

    Article  PubMed  Google Scholar 

  • Nakata H, Yoshie M, Miura A, Kudo K (2010) Characteristics of the athletes’ brain: evidence from neurophysiology and neuroimaging. Brain Res Rev 62:197–211

    Article  PubMed  Google Scholar 

  • Nougier V, Stein JF, Bonnel AM (1991) Information processing in sport and “orienting of attention.” Int J Sport Psychol 22:307–327

    Google Scholar 

  • Ostry DJ, Gribble PL (2016) Sensory plasticity in human motor learning. Trends Neurosci 39:114–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overney LS, Blanke O, Herzog MH (2008) Enhanced temporal but not attentional processing in expert tennis players. PLoS ONE 3:e2380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342:1238411

    Article  PubMed  CAS  Google Scholar 

  • Pedersen M, Zalesky A, Omidvarnia A, Jackson GD (2018) Multilayer network switching rate predicts brain performance. Proc Natl Acad Sci USA 115:13376–13381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piras A, Lanzoni IM, Raffi M, Persiani M, Squatrito S (2016) The within-task criterion to determine successful and unsuccessful table tennis players. Int J Sports Sci Coach 11:523–531

    Article  Google Scholar 

  • Piras A, Raffi M, Perazzolo M, Lanzoni IM, Squatrito S (2019) Microsaccades and interest areas during free-viewing sport task. J Sports Sci 37:980–987

    Article  PubMed  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    Article  CAS  PubMed  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154

    Article  PubMed  Google Scholar 

  • Reddy PG et al (2018) Brain state flexibility accompanies motor-skill acquisition. Neuroimage 171:135–147

    Article  PubMed  Google Scholar 

  • Reinwald JR et al (2018) Neural mechanisms of early-life social stress as a developmental risk factor for severe psychiatric disorders. Biol Psychiatry 84:116–128

    Article  PubMed  Google Scholar 

  • Rushworth MF, Johansen-Berg H, Gobel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20(Suppl 1):S89-100

    Article  PubMed  Google Scholar 

  • Saad ZS et al (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoups A, Vogels R, Qian N, Orban G (2001) Practising orientation identification improves orientation coding in V1 neurons. Nature 412:549–553

    Article  CAS  PubMed  Google Scholar 

  • Seger CA (2006) The basal ganglia in human learning. Neuroscientist 12:285–290

    Article  PubMed  Google Scholar 

  • Shine JM et al (2019) Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat Neurosci 22:289–296

    Article  CAS  PubMed  Google Scholar 

  • Smith DM (2016) Neurophysiology of action anticipation in athletes: a systematic review. Neurosci Biobehav Rev 60:115–120

    Article  PubMed  Google Scholar 

  • Song XW et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE 6:e25031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171

    Article  CAS  PubMed  Google Scholar 

  • Sun FT, Miller LM, Rao AA, D’Esposito M (2007) Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb Cortex 17:1227–1234

    Article  PubMed  Google Scholar 

  • Tan XY et al (2016) Morphological and functional differences between athletes and novices in cortical neuronal networks. Front Hum Neurosci 10:660

    PubMed  Google Scholar 

  • Telesford QK et al (2017) Cohesive network reconfiguration accompanies extended training. Hum Brain Mapp 38:4744–4759

    Article  PubMed  PubMed Central  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzourio-Mazoyer N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  • Tzvi E, Stoldt A, Witt K, Kramer UM (2015) Striatal-cerebellar networks mediate consolidation in a motor sequence learning task: an fMRI study using dynamic causal modelling. Neuroimage 122:52–64

    Article  PubMed  Google Scholar 

  • Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438

    Article  PubMed  Google Scholar 

  • Vidaurre D, Smith SM, Woolrich MW (2017) Brain network dynamics are hierarchically organized in time. Proc Natl Acad Sci USA 114:12827–12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss MW, Kramer AF, Basak C, Prakash RS, Roberts B (2010) Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl Cogn Psychol 24:812–826

    Article  Google Scholar 

  • Wang J et al (2013) Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol Psychiatry 73:472–481

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2016a) Exploring brain functional plasticity in world class gymnasts: a network analysis. Brain Struct Funct 221:3503–3519

    Article  PubMed  Google Scholar 

  • Wang BY, Guo W, Zhou CL (2016b) Selective enhancement of attentional networks in college table tennis athletes: a preliminary investigation. PeerJ 4:e2762

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2019) Predicting domain-specific actions in expert table tennis players activates the semantic brain network. Neuroimage 200:482–489

    Article  PubMed  Google Scholar 

  • Wei G, Luo J (2010) Sport expert’s motor imagery: functional imaging of professional motor skills and simple motor skills. Brain Res 1341:52–62

    Article  CAS  PubMed  Google Scholar 

  • Wolf S et al (2014) Winning the game: brain processes in expert, young elite and amateur table tennis players. Front Behav Neurosci 8:370

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright MJ, Bishop DT, Jackson RC, Abernethy B (2010) Functional MRI reveals expert-novice differences during sport-related anticipation. NeuroReport 21:94–98

    Article  PubMed  Google Scholar 

  • Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8:e68910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan CG et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201

    Article  PubMed  Google Scholar 

  • Yang J (2015) The influence of motor expertise on the brain activity of motor task performance: a meta-analysis of functional magnetic resonance imaging studies. Cogn Affect Behav Neurosci 15:381–394

    Article  PubMed  Google Scholar 

  • Yarrow K, Brown P, Krakauer JW (2009) Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat Rev Neurosci 10:585–596

    Article  CAS  PubMed  Google Scholar 

  • Yeo BT et al (2015) Functional specialization and flexibility in human association cortex. Cereb Cortex 25:3654–3672

    Article  PubMed  Google Scholar 

  • Yin D et al (2016) Dissociable changes of frontal and parietal cortices in inherent functional flexibility across the human life span. J Neurosci 36:10060–10074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin D et al (2017) Failure in cognitive suppression of negative affect in adolescents with generalized anxiety disorder. Sci Rep 7:6583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin D et al (2018) Dissociable frontostriatal connectivity: mechanism and predictor of the clinical efficacy of capsulotomy in obsessive-compulsive disorder. Biol Psychiatry 84:926–936

    Article  PubMed  Google Scholar 

  • Yin D et al (2019) Brain map of intrinsic functional flexibility in anesthetized monkeys and awake humans. Front Neurosci 13:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamora-Lopez G, Russo E, Gleiser PM, Zhou C, Kurths J (2011) Characterizing the complexity of brain and mind networks. Philos Trans R Soc A Math Phys Eng Sci 369:3730–3747

    Article  Google Scholar 

  • Zhang J et al (2016) Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 139:2307–2321

    Article  PubMed  Google Scholar 

  • Zhao Q, Lu Y, Jaquess KJ, Zhou C (2018) Utilization of cues in action anticipation in table tennis players. J Sports Sci 36:2699–2705

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2017YFC1310400); National Natural Science Foundation of China (31600869, 81471651, 11835003). We also would like to thank Drs. Xiuyan Guo, Xiaolin Zhou, Shuguang Kuai, and Li Zheng for their discussions and suggestions during the preparation of this study.

Author information

Authors and Affiliations

Authors

Contributions

DZY, LL, MXF, and QC designed the research. XFW, XYZ, QRY, and YW collected experimental data. DZY analysed data and wrote the draft manuscript. All authors provided feedback on the manuscript.

Corresponding authors

Correspondence to Dazhi Yin, Mingxia Fan or Lin Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, D., Wang, X., Zhang, X. et al. Dissociable plasticity of visual-motor system in functional specialization and flexibility in expert table tennis players. Brain Struct Funct 226, 1973–1990 (2021). https://doi.org/10.1007/s00429-021-02304-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02304-w

Keywords

Navigation