Andrew RJ (1991) Neural and behavioural plasticity: the use of the domestic chick as a model. Oxford University Press, Oxford
Book
Google Scholar
Andrew RJ (2009) Origins of asymmetry in the CNS. Semin Cell Dev Biol 20:485–490. https://doi.org/10.1016/j.semcdb.2008.11.001
CAS
Article
PubMed
Google Scholar
Andrew RJ, Johnston ANB, Robins A, Rogers LJ (2004) Light experience and the development of behavioural lateralisation in chicks II. Choice of familiar versus unfamiliar model social partner. Behav Brain Res 155:67–76. https://doi.org/10.1016/j.bbr.2004.04.016
Article
PubMed
Google Scholar
Atoji Y, Sarkar S, Wild JM (2018) Differential projections of the densocellular and intermediate parts of the hyperpallium in the pigeon (Columba livia). J Comp Neurol 526:146–165. https://doi.org/10.1002/cne.24328
CAS
Article
PubMed
Google Scholar
Bischof H-J (1981) A stereotaxic headholder for small birds. Brain Res Bull 7:435–436
CAS
Article
Google Scholar
Bischof H-J (1988) The visual field and visually guided behavior in the zebra finch (Taeniopygia guttata). J Comp Physiol 163:329–337. https://doi.org/10.1007/BF00604008
Article
Google Scholar
Bischof H-J, Watanabe S (1997) On the structure and function of the tectofugal visual pathway in laterally eyed birds. Eur J Morphol 35:246–254. https://doi.org/10.1076/ejom.35.4.246.13080
CAS
Article
PubMed
Google Scholar
Bischof H-J, Eckmeier D, Keary N et al (2016) Multiple visual field representations in the visual Wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata). PLoS ONE 11:e0154927. https://doi.org/10.1371/journal.pone.0154927
CAS
Article
PubMed
PubMed Central
Google Scholar
Blake R, Wilson H (2011) Binocular vision. Vis Res 51:754–770. https://doi.org/10.1016/j.visres.2010.10.009
Article
PubMed
Google Scholar
Bredenkötter M, Bischof H-J (1990a) Differences between ipsilaterally and contralaterally evoked potentials in the visual Wulst of the zebra finch. Vis Neurosci 5:155–163. https://doi.org/10.1017/s0952523800000201
Article
PubMed
Google Scholar
Bredenkötter M, Bischof H-J (1990b) Ipsilaterally evoked responses of the zebra finch visual Wulst are reduced during ontogeny. Brain Res 515:343–346. https://doi.org/10.1016/0006-8993(90)90620-q
Article
PubMed
Google Scholar
Budzynski CA, Gagliardo A, Ioalé P, Bingman VP (2002) Participation of the homing pigeon thalamofugal visual pathway in sun-compass associative learning. Eur J Neurosci 15:197–210. https://doi.org/10.1046/j.0953-816x.2001.01833.x
Article
PubMed
Google Scholar
Buschmann J-UF, Manns M, Güntürkün O (2006) “Let There be Light!” Pigeon eggs are regularly exposed to light during breeding. Behav Process 73:62–67. https://doi.org/10.1016/j.beproc.2006.03.012
Article
Google Scholar
Chiandetti C (2011) Pseudoneglect and embryonic light stimulation in the avian brain. Behav Neurosci 125:775–782. https://doi.org/10.1037/a0024721
Article
PubMed
Google Scholar
Chiandetti C, Vallortigara G (2019) Distinct effect of early and late embryonic light-stimulation on chicks’ lateralization. Neuroscience 414:1–7. https://doi.org/10.1016/j.neuroscience.2019.06.036
CAS
Article
PubMed
Google Scholar
Chiandetti C, Galliussi J, Andrew RJ, Vallortigara G (2013) Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci Rep 3:2701. https://doi.org/10.1038/srep02701
Article
PubMed
PubMed Central
Google Scholar
Chiandetti C, Lemaire B, Versace E, Vallortigara G (2017) Early- and late-light embryonic stimulation modulates similarly chicks’ ability to filter out distractors. Symmetry 9:84. https://doi.org/10.3390/sym9060084
Article
Google Scholar
Clark WJ, Colombo M (2020) The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Prog Neurobiol 195:101781. https://doi.org/10.1016/j.pneurobio.2020.101781
Article
PubMed
Google Scholar
Corrales Parada CD, Morandi-Raikova A, Rosa-Salva O, Mayer U (2021) Neural basis of unfamiliar conspecific recognition in domestic chicks (Gallus Gallus domesticus). Behav Brain Res 397:112927. https://doi.org/10.1016/j.bbr.2020.112927
CAS
Article
PubMed
Google Scholar
Cowan WM, Adamson L, Powell TPS (1961) An experimental study of the avian visual system. J Anat 95:545–563
CAS
PubMed
PubMed Central
Google Scholar
Daisley JN, Vallortigara G, Regolin L (2010) Logic in an asymmetrical (social) brain: transitive inference in the young domestic chick. Soc Neurosci 5:309–319. https://doi.org/10.1080/17470910903529795
Article
PubMed
Google Scholar
Deng C, Rogers LJ (1997) Differential contributions of the two visual pathways to functional lateralization in chicks. Behav Brain Res 87:173–182. https://doi.org/10.1016/S0166-4328(97)02276-6
CAS
Article
PubMed
Google Scholar
Deng C, Rogers LJ (2002) Social recognition and approach in the chick: lateralization and effect of visual experience. Anim Behav 63:697–706. https://doi.org/10.1006/anbe.2001.1942
Article
Google Scholar
Denton CJ (1981) Topography of the hyperstriatal visual projection area in the young domestic chicken. Exp Neurol 74:482–498. https://doi.org/10.1016/0014-4886(81)90186-2
CAS
Article
PubMed
Google Scholar
Dharmaretnam M, Rogers LJ (2005) Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav Brain Res 162:62–70. https://doi.org/10.1016/j.bbr.2005.03.012
CAS
Article
PubMed
Google Scholar
Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252. https://doi.org/10.1080/00401706.1964.10490181
Article
Google Scholar
Folta K, Diekamp B, Güntürkün O (2004) Asymmetrical modes of visual bottom-up and top-down integration in the thalamic nucleus rotundus of pigeons. J Neurosci 24:9475–9485. https://doi.org/10.1523/JNEUROSCI.3289-04.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Frasnelli E, Vallortigara G, Rogers LJ (2012) Left–right asymmetries of behaviour and nervous system in invertebrates. Neurosci Biobehav Rev 36:1273–1291. https://doi.org/10.1016/j.neubiorev.2012.02.006
Article
PubMed
Google Scholar
Freund N, Valencia-Alfonso CE, Kirsch J et al (2016) Asymmetric top-down modulation of ascending visual pathways in pigeons. Neuropsychologia 83:37–47. https://doi.org/10.1016/j.neuropsychologia.2015.08.014
Article
PubMed
Google Scholar
Golüke S, Bischof H-J, Engelmann J et al (2019) Social odour activates the hippocampal formation in zebra finches (Taeniopygia guttata). Behav Brain Res 364:41–49. https://doi.org/10.1016/j.bbr.2019.02.013
Article
PubMed
Google Scholar
Güntürkün O (1997) Avian visual lateralization: a review. NeuroReport 8(6):iii–xi
PubMed
Google Scholar
Güntürkün O, Ocklenburg S (2017) Ontogenesis of lateralization. Neuron 94:249–263. https://doi.org/10.1016/j.neuron.2017.02.045
CAS
Article
PubMed
Google Scholar
Güntürkün O, Hellmann B, Melsbach G, Prior H (1998) Asymmetries of representation in the visual system of pigeons. NeuroReport 9:4127–4130. https://doi.org/10.1097/00001756-199812210-00023
Article
PubMed
Google Scholar
Gusel’nikov VI, Morenkov ED, Hunh DC (1977) Responses and properties of receptive fields of neurons in the visual projection zone of the pigeon hyperstriatum. Neurosci Behav Physiol 8:210–215. https://doi.org/10.1007/BF01184060
Article
PubMed
Google Scholar
Iwaniuk AN, Heesy CP, Hall MI, Wylie DRW (2008) Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:267–282. https://doi.org/10.1007/s00359-007-0304-0
Article
PubMed
Google Scholar
Johnston M, Colombo M (2017) Entopallium. In: Vonk J, Shackelford TK (eds) Encyclopedia of animal cognition and behavior. Springer International Publishing AG, Basel, pp 1–6
Google Scholar
Johnston AN, Rogers LJ (1999) Light exposure of chick embryo influences lateralized recall of imprinting memory. Behav Neurosci 113:1267–1273. https://doi.org/10.1037//0735-7044.113.6.1267
CAS
Article
PubMed
Google Scholar
Johnston AN, Rogers LJ, Dodd PR (1995) [3H]MK-801 binding asymmetry in the IMHV region of dark-reared chicks is reversed by imprinting. Brain Res Bull 37:5–8. https://doi.org/10.1016/0361-9230(94)00249-5
CAS
Article
PubMed
Google Scholar
Karten HJ, Shimizu T (1989) The origins of neocortex: connections and lamination as distinct events in evolution. J Cogn Neurosci 1:291–301. https://doi.org/10.1162/jocn.1989.1.4.291
CAS
Article
PubMed
Google Scholar
Karten HJ, Hodos W, Nauta WJH, Revzin AM (1973) Neural connections of the “visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–277. https://doi.org/10.1002/cne.901500303
CAS
Article
PubMed
Google Scholar
Keysers C, Diekamp B, Güntürkün O (2000) Evidence for physiological asymmetries in the intertectal connections of the pigeon (Columba livia) and their potential role in brain lateralisation. Brain Res 852:406–413. https://doi.org/10.1016/S0006-8993(99)02192-7
CAS
Article
PubMed
Google Scholar
Knudsen EI (2020) Evolution of neural processing for visual perception in vertebrates. J Comp Neurol 528:2888–2901. https://doi.org/10.1002/cne.24871
Article
PubMed
PubMed Central
Google Scholar
Kuo ZY (1932) Ontogeny of embryonic behavior in aves. IV. The influence of embryonic movements upon the behavior after hatching. J Comp Psychol 14:109–122. https://doi.org/10.1037/h0071451
Article
Google Scholar
Letzner S, Manns M, Güntürkün O (2020) Light-dependent development of the tectorotundal projection in pigeons. Eur J Neurosci 52:3561–3571. https://doi.org/10.1111/ejn.14775
Article
PubMed
Google Scholar
Lorenzi E, Mayer U, Rosa-Salva O, Vallortigara G (2017) Dynamic features of animate motion activate septal and preoptic areas in visually naïve chicks (Gallus gallus). Neuroscience 354:54–68. https://doi.org/10.1016/j.neuroscience.2017.04.022
CAS
Article
PubMed
Google Scholar
Lorenzi E, Mayer U, Rosa-Salva O et al (2019) Spontaneous and light-induced lateralization of immediate early genes expression in domestic chicks. Behav Brain Res. https://doi.org/10.1016/j.bbr.2019.111905
Article
PubMed
Google Scholar
Manns M, Güntürkün O (1999a) “Natural” and artificial monocular deprivation effects on thalamic soma sizes in pigeons. NeuroReport 10:3223–3228. https://doi.org/10.1097/00001756-199910190-00018
CAS
Article
PubMed
Google Scholar
Manns M, Güntürkün O (1999b) Monocular deprivation alters the direction of functional and morphological asymmetries in the pigeon’s (Columba livia) visual system. Behav Neurosci 113:1257–1266. https://doi.org/10.1037//0735-7044.113.6.1257
CAS
Article
PubMed
Google Scholar
Manns M, Güntürkün O (2003) Light experience induces differential asymmetry pattern of GABA- and parvalbumin-positive cells in the pigeon’s visual midbrain. J Chem Neuroanat 25:249–259. https://doi.org/10.1016/s0891-0618(03)00035-8
CAS
Article
PubMed
Google Scholar
Mascetti GG, Vallortigara G (2001) Why do birds sleep with one eye open? Light exposure of the chick embryo as a determinant of monocular sleep. Curr Biol 11:971–974. https://doi.org/10.1016/s0960-9822(01)00265-2
CAS
Article
PubMed
Google Scholar
Mayer U, Pecchia T, Bingman VP et al (2016) Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: an immediate early gene study. Hippocampus 26:27–40. https://doi.org/10.1002/hipo.22486
CAS
Article
PubMed
Google Scholar
Mayer U, Rosa-Salva O, Morbioli F, Vallortigara G (2017) The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus). Eur J Neurosci 45:423–432. https://doi.org/10.1111/ejn.13484
Article
PubMed
Google Scholar
Mckenzie R, Andrew RJ, Jones RB (1998) Lateralization in chicks and hens: new evidence for control of response by the right eye system. Neuropsychologia 36(1):51–58. https://doi.org/10.1016/S0028-3932(97)00108-5
CAS
Article
PubMed
Google Scholar
Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23:1–12. https://doi.org/10.1016/s0166-2236(99)01486-1
CAS
Article
PubMed
Google Scholar
Michael N, Löwel S, Bischof H-J (2015) Features of the retinotopic representation in the visual Wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata). PLoS ONE 10:e0124917. https://doi.org/10.1371/journal.pone.0124917
CAS
Article
PubMed
PubMed Central
Google Scholar
Mihrshahi R (2006) The corpus callosum as an evolutionary innovation. J Exp Zool B 306B:8–17. https://doi.org/10.1002/jez.b.21067
Article
Google Scholar
Morandi-Raikova A, Mayer U (2020) The effect of monocular occlusion on hippocampal c-Fos expression in domestic chicks (Gallus gallus). Sci Rep 10:7205. https://doi.org/10.1038/s41598-020-64224-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Morandi-Raikova A, Danieli K, Lorenzi E et al (2021) Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: rightwards lateralization of parvalbumin neurons in the entopallium. Laterality. https://doi.org/10.1080/1357650X.2021.1873357
Article
PubMed
Google Scholar
Mouritsen H, Feenders G, Liedvogel M et al (2005) Night-vision brain area in migratory songbirds. Proc Natl Acad Sci USA 102:8339–8344. https://doi.org/10.1073/pnas.0409575102
CAS
Article
PubMed
PubMed Central
Google Scholar
Ng BSW, Grabska-Barwińska A, Güntürkün O, Jancke D (2010) Dominant vertical orientation processing without clustered maps: early visual brain dynamics imaged with voltage-sensitive dye in the pigeon visual Wulst. J Neurosci 30:6713–6725. https://doi.org/10.1523/JNEUROSCI.4078-09.2010
CAS
Article
PubMed
Google Scholar
Nieder A, Wagner H (2000) Horizontal-disparity tuning of neurons in the visual forebrain of the behaving barn owl. J Neurophysiol 83:2967–2979. https://doi.org/10.1152/jn.2000.83.5.2967
CAS
Article
PubMed
Google Scholar
Parker DM, Delius JD (1972) Visual evoked potentials in the forebrain of the pigeon. Exp Brain Res 14:198–209. https://doi.org/10.1007/BF00234799
CAS
Article
PubMed
Google Scholar
Pettigrew JD, Konishi M (1976) Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). Science 193:675–678. https://doi.org/10.1126/science.948741
CAS
Article
PubMed
Google Scholar
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 1 July 2020
Rajendra S, Rogers LJ (1993) Asymmetry is present in the thalamofugal visual projections of female chicks. Exp Brain Res 92:542–544. https://doi.org/10.1007/BF00229044
CAS
Article
PubMed
Google Scholar
Revzin AM (1969) A specific visual projection area in the hyperstriatum of the pigeon (Columba livia). Brain Res 15:246–249. https://doi.org/10.1016/0006-8993(69)90324-2
CAS
Article
PubMed
Google Scholar
Rogers LJ (1982) Light experience and asymmetry of brain function in chickens. Nature 297:223–225. https://doi.org/10.1038/297223a0
CAS
Article
PubMed
Google Scholar
Rogers LJ (1990) Light input and the reversal of functional lateralization in the chicken brain. Behav Brain Res 38:211–221. https://doi.org/10.1016/0166-4328(90)90176-F
CAS
Article
PubMed
Google Scholar
Rogers LJ (1997) Early experiential effects on laterality: research on chicks has relevance to other species. Laterality 2:199–219. https://doi.org/10.1080/135765097397440
CAS
Article
PubMed
Google Scholar
Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73:236–253. https://doi.org/10.1006/brln.2000.2305
CAS
Article
PubMed
Google Scholar
Rogers L (2012) The two hemispheres of the avian brain: their differing roles in perceptual processing and the expression of behavior. J Ornithol 153(1):S61–S74. https://doi.org/10.1007/s10336-011-0769-z
Article
Google Scholar
Rogers LJ, Bolden SW (1991) Light-dependent development and asymmetry of visual projections. Neurosci Lett 121:63–67. https://doi.org/10.1016/0304-3940(91)90650-I
CAS
Article
PubMed
Google Scholar
Rogers LJ, Deng C (1999) Light experience and lateralization of the two visual pathways in the chick. Behav Brain Res 98:277–287. https://doi.org/10.1016/s0166-4328(98)00094-1
CAS
Article
PubMed
Google Scholar
Rogers LJ, Sink HS (1988) Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp Brain Res 70:378–384. https://doi.org/10.1007/BF00248362
CAS
Article
PubMed
Google Scholar
Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, New York
Book
Google Scholar
Rosa Salva O, Regolin L, Vallortigara G (2007) Chicks discriminate human gaze with their right hemisphere. Behav Brain Res 177:15–21. https://doi.org/10.1016/j.bbr.2006.11.020
Article
PubMed
Google Scholar
Rosa Salva O, Regolin L, Vallortigara G (2012) Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behav Brain Res 228:133–143. https://doi.org/10.1016/j.bbr.2011.11.025
Article
PubMed
Google Scholar
Rugani R, Rosa Salva O, Regolin L, Vallortigara G (2015) Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behav Brain Res 290:1–7. https://doi.org/10.1016/j.bbr.2015.04.032
Article
PubMed
Google Scholar
Shanahan M, Bingman VP, Shimizu T et al (2013) Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 7:89. https://doi.org/10.3389/fncom.2013.00089
Article
PubMed
PubMed Central
Google Scholar
Skiba M, Diekamp B, Güntürkün O (2002) Embryonic light stimulation induces different asymmetries in visuoperceptual and visuomotor pathways of pigeons. Behav Brain Res 134:149–156. https://doi.org/10.1016/s0166-4328(01)00463-6
Article
PubMed
Google Scholar
Stacho M, Letzner S, Theiss C et al (2016) A GABAergic tecto-tegmento-tectal pathway in pigeons. J Comp Neurol 524:2886–2913. https://doi.org/10.1002/cne.23999
CAS
Article
PubMed
Google Scholar
Stacho M, Herold C, Rook N et al (2020) A cortex-like canonical circuit in the avian forebrain. Science 369(6511):eabc534. https://doi.org/10.1126/science.abc5534
CAS
Article
Google Scholar
Ströckens F, Freund N, Manns M et al (2013) Visual asymmetries and the ascending thalamofugal pathway in pigeons. Brain Struct Funct 218:1197–1209. https://doi.org/10.1007/s00429-012-0454-x
Article
PubMed
Google Scholar
Vallortigara G (1992) Right hemisphere advantage for social recognition in the chick. Neuropsychologia 30:761–768. https://doi.org/10.1016/0028-3932(92)90080-6
CAS
Article
PubMed
Google Scholar
Vallortigara G, Andrew RJ (1991) Lateralization of response by chicks to change in a model partner. Anim Behav 41:187–194. https://doi.org/10.1016/S0003-3472(05)80470-1
Article
Google Scholar
Vallortigara G, Andrew RJ (1994) Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behav Process 33:41–57. https://doi.org/10.1016/0376-6357(94)90059-0
CAS
Article
Google Scholar
Vallortigara G, Rogers LJ (2005) survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589. https://doi.org/10.1017/S0140525X05000105
Article
PubMed
Google Scholar
Vallortigara G, Cozzutti C, Tommasi L, Rogers LJ (2001) How birds use their eyes: opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick. Curr Biol 11:29–33. https://doi.org/10.1016/s0960-9822(00)00027-0
CAS
Article
PubMed
Google Scholar
Verhaal J, Kirsch JA, Vlachos I et al (2012) Lateralized reward-related visual discrimination in the avian entopallium. Eur J Neurosci 35:1337–1343. https://doi.org/10.1111/j.1460-9568.2012.08049.x
Article
PubMed
Google Scholar
Watanabe S, Mayer U, Bischof H-J (2011) Visual Wulst analyses “where” and entopallium analyses “what” in the zebra finch visual system. Behav Brain Res 222:51–56. https://doi.org/10.1016/j.bbr.2011.03.035
Article
PubMed
Google Scholar
Wilson P (1980) The organization of the visual hyperstriatum in the domestic chick. II. Receptive field properties of single units. Brain Res 188:333–345. https://doi.org/10.1016/0006-8993(80)90035-9
CAS
Article
PubMed
Google Scholar
Zapka M, Heyers D, Hein CM et al (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1277. https://doi.org/10.1038/nature08528
CAS
Article
PubMed
Google Scholar