Skip to main content
Log in

Cannabinoids, TRPV and nitric oxide: the three ring circus of neuronal excitability

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

A Correction to this article was published on 11 December 2019

This article has been updated

Abstract

Endocannabinoid system is considered a relevant player in the regulation of neuronal excitability, since it contributes to maintaining the balance of the synaptic ionic milieu. Perturbations to bioelectric conductances have been implicated in the pathophysiological processes leading to hyperexcitability and epileptic seizures. Cannabinoid influence on neurosignalling is exerted on classic receptor-mediated mechanisms or on further molecular targets. Among these, transient receptor potential vanilloid (TRPV) are ionic channels modulated by cannabinoids that are involved in the transduction of a plethora of stimuli and trigger fundamental downstream pathways in the post-synaptic site. In this review, we aim at providing a brief summary of the most recent data about the cross-talk between cannabinoid system and TRPV channels, drawing attention on their role on neuronal hyperexcitability. Then, we aim to unveil a plausible point of interaction between these neural signalling systems taking into consideration nitric oxide, a gaseous molecule inducing profound modifications to neural performances. From this novel perspective, we struggle to propose innovative cellular mechanisms in the regulation of hyperexcitability phenomena, with the goal of exploring plausible CB-related mechanisms underpinning epileptic seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 11 December 2019

    In the original publication of the article, the names of the authors were incorrectly swapped as Gambino Giuditta · Rizzo Valerio · Giglia Giuseppe · Ferraro Giuseppe · Sardo Pierangelo.

Abbreviations

2AG:

2-Arachidonoylglycerol

7NI:

7-Nitroindazole

ACEA:

2′-Chloroethylamide

AEA:

Anandamide

CA1:

Cornus ammonis 1

CA3:

Cornus ammonis 3

cAMP/PKA:

Cyclic adenosine monophosphate/protein kinase A

CAP:

Capsaicin

CB:

Cannabinoid

CB1R:

Cannabinoid receptor type 1

CB2R:

Cannabinoid receptors type 2

CCK:

Cholecystokinin

cGMP:

Cyclic guanosine monophosphate

CNG:

Cyclic nucleotide-gated

CNS:

Central nervous system

CPZ:

Capsazepine

DGLα:

Diacylglycerol lipase α

DSE:

Depolarization-induced suppression of excitation

DSI:

Depolarization-induced suppression of inhibition

eCB:

Endocannabinoids

EPSCs:

Excitatory post-synaptic currents

FAAH:

Fatty acid amide hydrolase enzyme

GLU:

Glutamate

LTD:

Long-term depression

LTP:

Long-term potentiation

MDA:

Maximal dentate gyrus activation

l-NAME:

N-ω-nitro-l-arginine methyl ester

NO:

Nitric oxide

NOS:

NO synthase

nNOS:

Neuronal NOS

eNOS:

Endothelial NOS

iNOS:

Inducible NOS

PKG:

CGMP-dependent protein kinases

sGC:

Soluble guanylyl cyclase

TLE:

Temporal lobe epilepsy

TRPV1:

Transient receptor potential vanilloid type 1

VGCCs:

Voltage-gated Ca2+ channels

WIN:

(R)-(+)WIN 55,212-2

References

  • Adermark L, Lovinger DM (2007) Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc Natl Acad Sci USA 104:20564–20569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguiar DC, Moreira FA, Terzian AL, Fogac MV, Lisboa SF, Wotjakc CT et al (2014) Modulation of defensive behavior by transient receptor potential vanilloid type-1 (TRPV1) channels. Neurosci Biobehav Rev 46:418–428

    Article  CAS  PubMed  Google Scholar 

  • Ahern GP, Klyachko VA, Jackson MB (2002) CGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci 25(10):510–517

    Article  CAS  PubMed  Google Scholar 

  • Anwyl R (2009) Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharm 56(4):735–740

    Article  CAS  Google Scholar 

  • Arancio O, Kandel ER, Hawkins RD (1995) Activity-dependent long-term enhancement of transmitter release by presynaptic 30, 50-cyclic GMP in cultured hippocampal neurons. Nature 376:74–80

    Article  CAS  PubMed  Google Scholar 

  • Armstrong C, Morgan RJ, Soltesz I (2009) Pursuing paradoxical proconvulsant prophylaxis for epileptogenesis. Epilepsia 50:1657–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala GF, Dichter M, Gumnit RJ, Matsumoto G, Spencer WA (1973) Genesis of epileptic interictal spikes: new knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res 52:1–17

    Article  CAS  PubMed  Google Scholar 

  • Azad SC, Marsicano G, Eberlein I, Putzke J, Zieglgänsberger W, Spanagel R et al (2001) Differential role of the nitric oxide pathway on delta(9)-THC-induced central nervous system effects in the mouse. Eur J Neurosci 13(3):561–568

    Article  CAS  PubMed  Google Scholar 

  • Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431:312–316

    Article  CAS  PubMed  Google Scholar 

  • Bahremand A, Nasrabady SE, Shafaroodi H, Ghasemi M, Dehpour AR (2009) Involvement of nitrergic system in the anticonvulsant effect of the cannabinoid CB(1) agonist ACEA in the pentylenetetrazole-induced seizure in mice. Epilepsy Res 84(2–3):110–119

    Article  CAS  PubMed  Google Scholar 

  • Banach M, Piskorska B, Czuczwar SJ, Borowicz KK (2011) Nitric oxide, epileptic seizures, and action of antiepileptic drugs. CNS Neurol Disord Drug Targets 10(7):808–819

    Article  CAS  PubMed  Google Scholar 

  • Batista P, Fogaça MV, Guimarães FS (2015) The endocannabinoid, endovanilloid and nitrergic systems could interact in the rat dorsolateral periaqueductal gray matter to control anxiety-like behaviors. Behav Brain Res 293:182–188

    Article  CAS  PubMed  Google Scholar 

  • Benko R, Lazar Z, Undi S, Illenyi L, Antal A, Horvath ÖP et al (2005) Inhibition of nitric oxide synthesis blocks the inhibitory response to capsaicin in intestinal circular muscle preparations from different species. Life Sci 76:2773–2782

    Article  CAS  PubMed  Google Scholar 

  • Bhaskaran MD, Smith BN (2010) Effects of TRPV1 activation on synaptic excitation in the dentate gyrus of a mouse model of temporal lobe epilepsy. Exp Neurol 223(2):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair RE, Deshpande LS, Sombati S, Falenski KW, Martin BR, DeLorenzo RJ (2006) Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. J Pharmacol Exp Ther 317:1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Borowicz KK, Luszczki J, Kleinrok Z, Czuczwar SJ (2000) 7-Nitroindazole, a nitric oxide synthase inhibitor, enhances the anticonvulsive action of ethosuximide and clonazepam against penthylenetetrazol-induced convulsions. J Neural Transm 107:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Braakman HM, van Oostenbrugge RJ, van Kranen-Mastenbroek VH, de Krom MC (2009) Rimonabant induces partial seizures in a patient with a history of generalized epilepsy. Epilepsia 50(9):2171–2172

    Article  PubMed  Google Scholar 

  • Bredt DS, Snyder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86:9030–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenman JE, Bredt DS (1997) Synaptic signalling by nitric oxide. Curr Opin Neurobiol 7:374–378

    Article  CAS  PubMed  Google Scholar 

  • Bromfield EB, Cavazos JE, Sirven JI, editors (2006) An introduction to epilepsy. West Hartford (CT): American Epilepsy Society, chapter 2, clinical epilepsy

  • Brown SP, Brenowitz SD, Regehr WG (2003) Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 6:1048–1057

    Article  CAS  PubMed  Google Scholar 

  • Burette A, Zabel U, Weinberg RJ, Schmidt HH, Valtschanoff JG (2002) Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus. J Neurosci 22(20):8961–8970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2):240–251

    Article  CAS  PubMed  Google Scholar 

  • Cai CY, Wu HY, Luo CX, Zhu DY, Zhang Y, Zhou QG et al (2019) Extracellular regulated protein kinaseis critical for the role of 5-HT1a receptor in modulating nNOS expression and anxiety-related behaviors. Behav Brain Res 357–358:88–97. https://doi.org/10.1016/J.BBR.2017.12.017

    Article  PubMed  Google Scholar 

  • Carletti F, Ferraro G, Rizzo V, Cannizzaro C, Sardo P (2013) Antiepileptic effect of dimethyl sulfoxide in a rat model of temporal lobe epilepsy. Neurosci Lett 546:31–35

    Article  CAS  PubMed  Google Scholar 

  • Carletti F, Gambino G, Rizzo V, Ferraro G, Sardo P (2015) Cannabinoid and nitric oxide signaling interplay in the modulation of hippocampal hyperexcitability: study on electrophysiological and behavioral models of temporal lobe epilepsy in the rat. Neuroscience 303:149–159. https://doi.org/10.1016/j.neuroscience.2015.06.047

    Article  CAS  PubMed  Google Scholar 

  • Carletti F, Sardo P, Gambino G, Liu X, Ferraro G, Rizzo V (2016a) Hippocampal hyperexcitability is modulated by microtubule-active agent: evidence from in vivo and in vitro epilepsy models in the rat front cell. Neuroscience 10:29. https://doi.org/10.3389/fncel.2016.00029

    Article  CAS  Google Scholar 

  • Carletti F, Gambino G, Rizzo V, Ferraro G, Sardo P (2016b) Involvement of TRPV1 channels in the activity of the cannabinoid WIN 55,212-2 in an acute rat model of temporal lobe epilepsy. Epilepsy Res 122:56–65

    Article  CAS  PubMed  Google Scholar 

  • Carletti F, Gambino G, Rizzo V, Ferraro G, Sardo P (2017) Neuronal nitric oxide synthase is involved in CB/TRPV1 signalling: focus on control of hippocampal hyperexcitability. Epilepsy Res 138:18–25

    Article  CAS  PubMed  Google Scholar 

  • Carletti F, Rizzo V, Gambino G, De Caro V, Sutera FM, Li Giannola et al (2018) Comparative study of the effects exerted by N-valproyl-l-phenylalanine and N-valproyl-l-tryptophan on CA1 hippocampal epileptiform activity in rat. Curr Pharm Des 24:1849–1858

    Article  CAS  PubMed  Google Scholar 

  • Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76(1):70–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R et al (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31:5067–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain SE, Jane DE, Jones RS (2012) Pre- and post-synaptic functions of kainate receptors at glutamate and GABA synapses in the rat entorhinal cortex. Hippocampus 22(3):555–576

    Article  CAS  PubMed  Google Scholar 

  • Chavez AE, Chiu CQ, Castillo PE (2010) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci 13:1511–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    Article  CAS  PubMed  Google Scholar 

  • Chiarlone A, Bellocchio L, Blazquez C, Resel E, Soria-Gomez E, Cannich A et al (2014) A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc Natl Acad Sci 111:8257–8262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cilio MR, Thiele E, Devinsky O (2014) The case for assessing cannabidiol in epilepsy. Epilepsia 55:787–790

    Article  CAS  PubMed  Google Scholar 

  • Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, Di Marzo V (2006) Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139(4):1405–1415. https://doi.org/10.1016/j.neuroscience.2006.02.074

    Article  CAS  PubMed  Google Scholar 

  • De Petrocellis L, Di Marzo V (2009) Role of endocannabinoids and endovanilloids in Ca2+ signalling. Cell Calcium 45(6):611–624. https://doi.org/10.1016/j.ceca.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  • De Petrocellis L, Di Marzo V (2010) Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels. J Neuroimmune Pharmacol 5(1):103–121. https://doi.org/10.1007/s11481-009-9177-z

    Article  PubMed  Google Scholar 

  • De Petrocellis L, Nabissi M, Santoni G, Ligresti A (2017) Actions and regulation of ionotropic cannabinoid receptors. Adv Pharmacol 80:249–289. https://doi.org/10.1016/bs.apha.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  • de Vasconcelos AP, Gizard F, Marescaux C, Nehlig A (2000) Role of nitric oxide in pentylenetetrazol-induced seizures: age-dependent effects in the immature rat. Epilepsia 41(4):363–371

    Article  PubMed  Google Scholar 

  • Del-Bel EA, Oliveira PR, Oliveira JA, Mishra PK, Jobe PC, Garcia-Cairasco N (1997) Anticonvulsant and proconvulsant roles of nitric oxide in experimental epilepsy models. Braz J Med Biol Res 30:971–979

    Article  CAS  PubMed  Google Scholar 

  • den Boon FS, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S et al (2012) Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci USA 109(9):3534–3539

    Article  Google Scholar 

  • Derbenev AV, Monroe MJ, Glatzer NR, Smith BN (2006) Vanilloid-mediated heterosynaptic facilitation of inhibitory synaptic input to neurons of the rat dorsal motor nucleus of the vagus. J Neurosci 26:9666–9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande LS, Sombati S, Blair RE, Carter DS, Martin BR, DeLorenzo RJ (2007) Cannabinoid CB1 receptor antagonists cause status epilepticus-like activity in the hippocampal neuronal culture model of acquired epilepsy. Neurosci Lett 411(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Di Marzo V, De Petrocellis L (2012) Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond B Biol Sci 367(1607):3216–3228. https://doi.org/10.1098/rstb.2011.0382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong XP, Wang X, Xu H (2010) TRP channels of intracellular membranes. J Neurochem 113(2):313–328. https://doi.org/10.1111/j.1471-4159.2010.06626.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle MW, Bailey TW, Jin Y-H, Andresen MC (2002) Vanilloid receptors presynaptically modulate visceral afferent synaptic transmission in nucleus tractus solitarius. J Neurosci 22:8222–8229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawley J, Hofmann ME, Andresen MC (2014) Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission. J Neurosci 34(24):8324–8332. https://doi.org/10.1523/JNEUROSCI.0315-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    Article  CAS  Google Scholar 

  • Fernández-Ruiz J, Romero J, Velasco G, Tolón RM, Ramos JA, Guzmán M (2007) Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci 28(1):39–45

    Article  PubMed  CAS  Google Scholar 

  • Ferraro G, Sardo P (2004) Nitric oxide and brain hyperexcitability. Vivo 18:357–366

    CAS  Google Scholar 

  • Ferraro G, Sardo P (2009) Cholecystokinin-8 sulfate modulates the anticonvulsant efficacy of vigabatrin in an experimental model of partial complex epilepsy in the rat. Epilepsia 50:721–730

    Article  CAS  PubMed  Google Scholar 

  • Fioravanti B, De Felice M, Stucky CL, Medler KA, Luo MC, Gardell LR et al (2008) Constitutive activity at the cannabinoid CB1 receptor is required for behavioral response to noxious chemical stimulation of TRPV1: antinociceptive actions of CB1 inverse agonists. J Neurosci 28:11593–11602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Kiener T, Bouilleret V, Loup F (1999) GABAergic neurons and GABAA-receptors in temporal lobe epilepsy. Neurochem Int 34:435–445

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Xie Z, Zuo H (2009) TRPV1: a potential target for antiepileptogenesis. Med Hypotheses 73(1):100–102

    Article  CAS  PubMed  Google Scholar 

  • Galanopoulou AS (2007) Developmental patterns in the regulation of chloride homeostasis and GABAA receptor signaling by seizures. Epilepsia 48(Suppl 5):14–18

    Article  CAS  PubMed  Google Scholar 

  • Gambino G, Allegra M, Sardo P, Attanzio A, Tesoriere L, Livrea MA et al (2018) Brain distribution and modulation of neuronal excitability by indicaxanthin from Opuntia ficus indica administered at nutritionally-relevant amounts. Front Aging Neurosci 10:1–11

    Article  CAS  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  PubMed Central  Google Scholar 

  • Garzòn J, de la Torre-Madrid E, Rodrı´guez-Munoz M, Vicente-Sa´nchez A, Sa´nchez-Bla´zquez P (2009) Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine. Mol Pain 5:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Gerra ML, Ciccocioppo R, Cippitelli A, Serpelloni G et al (2010) Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists. Recent Pat CNS Drug Discov 5(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Gibson HE, Page RS, Van Hook MJ, Kauer JA (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57:746–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Reyes LE, Ladas TP, Chiang C, Durand DM (2013) TRPV1 antagonist capsazepine suppresses 4-AP-induced epileptiform activity in vitro and electrographic seizures in vivo. Exp Neurol 250:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grima G, Benz B, Do KB (2001) Glial-derived arginine, the nitric oxide precursor, protects neurons from NMDA-induced excitotoxicity. Eur J Neurosci 14:1762–1770

    Article  CAS  PubMed  Google Scholar 

  • Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13:1519–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F et al (2004) Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20:441–458. https://doi.org/10.1111/j.1460-9568.2004.03428.x

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Ayata C, Huang PL, Waeber C, Ayata G, Fujii M et al (1997) [3H]L-NG-nitrine binding after transient focal ischemia and NMDA-induced excitotoxicity in type I and type III nitric oxide synthase null mice. J Cereb Blood Flow Metab 17:515–526

    Article  CAS  PubMed  Google Scholar 

  • Harraz MM, Snyder SH (2017) Antidepressant actions of ketamine mediated by the mechanistic target of rapamycin, nitric oxide, and Rheb. Neurotherapeutics 14:728–733. https://doi.org/10.1007/s13311-017-0540-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillard CJ, Muthian S, Kearn CS (1999) Effects of CB(1) cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett 459:277–281

    Article  CAS  PubMed  Google Scholar 

  • Hillard CJ, Jarrahian A (2005) Accumulation of anandamide: evidence for cellular diversity. Neuropharmacology 48:1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Ho KW, Ward NJ, Calkins DJ (2012) TRPV1: A stress response protein in the central nervous system. Am J Neurodegener Dis 1:1–14

    PubMed  PubMed Central  Google Scholar 

  • Hofmann ME, Frazier CJ (2013) Marijuana, endocannabinoids, and epilepsy: potential and challenges for improved therapeutic intervention. Exp Neurol 244:43–50

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Fan J, Kemmerer ES, Evans S, Li Y, Wiley JW (2009) Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut 58:202–210

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Tian Y, Yuan Y, Qi M, Li Y, Du Y et al (2016) Enhanced oxidative stress is responsible for TRPV4-induced neurotoxicity. Front Cell Neurosci 10:232

    PubMed  PubMed Central  Google Scholar 

  • Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79

    Article  CAS  Google Scholar 

  • Hsieh C, Brown S, Derleth C, Mackie K (2002) Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 73:493–501. https://doi.org/10.1046/j.1471-4159.1999.0730493.x

    Article  Google Scholar 

  • Hurtado-Zavala JI, Ramachandran B, Ahmed S, Halder R, Bolleyer C, Awasthi A et al (2017) TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus. Nat Commun 8:15878. https://doi.org/10.1038/ncomms15878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E et al (2014) Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 5(11):1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Itzhak Y, Perez-Lanza D, Liddie S (2014) The strength of aversive and appetitive associations and maladaptive behaviors. IUBMB Life 66:559–571. https://doi.org/10.1002/iub.1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeske NA, Patwardhan AM, Gamper N, Price TJ, Akopian AN, Hargreaves KM (2006) Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons. J Biol Chem 281(43):32879–32890

    Article  CAS  PubMed  Google Scholar 

  • Jia YF, Li YC, Tang YP, Cao J, Wang L, Yang Y et al (2015) Interference of TRPV1 function altered the susceptibility of PTZ-induced seizures. Front Cell Neurosci 9:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin Y-H, Bailey TW, Li BY, Schild JH, Andresen MC (2004) Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals. J Neurosci 24:4709–4717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Carney ST, Vrana KE, Norford DC, Howlett AC (2008) Cannabinoid receptor-mediated translocation of NO-sensitive guanylyl cyclase and production of cyclic GMP in neuronal cells. Neuropharmacology 54(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Katona I, Urbán GM, Wallace M, Ledent C, Jung KM, Piomelli D et al (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26:5628–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauer JA, Gibson HE (2009) Hot flash: TRPV channels in the brain. Trends Neurosci 32(4):215–224. https://doi.org/10.1016/j.tins.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Won SJ, Mao XO, Ledent C, Jin K, Greenberg DA (2006a) Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis. J Pharmacol Exp Ther 319(1):150–154

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Won SJ, Mao XO, Jin K, Greenberg DA (2006b) Molecular mechanisms of cannabinoid protection from neuronal excitotoxicity. Mol Pharmacol 69(3):691–696

    Article  CAS  PubMed  Google Scholar 

  • Kiss JP (2000) Role of nitric oxide in the regulation of monoaminergic neurotransmission. Brain Res Bull 52:459–466

    Article  CAS  PubMed  Google Scholar 

  • Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and non synaptic transmission. Trends Neurosci 24:211–215

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC, Regehr WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727

    Article  CAS  PubMed  Google Scholar 

  • Leite JP, Neder L, Arisi GM, Carlotti CG, Assirati JA, Moreira JE (2005) Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Epilepsia 46(5):S134–S141

    Article  Google Scholar 

  • Li D-P, Chen S-R, Pan H-L (2004) VR 1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus. J Neurophysiol 92(3):1807–1816. https://doi.org/10.1152/jn.00171.2004

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Mao RR, Zhang JC, Yang Y, Cao J, Xu L (2008) Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol Psychiatry 64(4):286–292. https://doi.org/10.1016/j.biopsych.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  • Ligresti A, De Petrocellis L, Di Marzo V (2016) From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev 96(4):1593–1659

    Article  CAS  PubMed  Google Scholar 

  • Lisboa SF, Magesto AC, Aguiar JC, Resstel LB, Guimaraes FS (2013) Complex interaction between anandamide and the nitrergic system in the dorsolateral periaqueductal gray to modulate anxiety-like behavior in rats. Neuropharmacology 75:86–89

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Miller MJ, Joshi MS, Sadowska-Krowicka H, Clark DA, Lancaster JR (1998) Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem 273:18709–18713

    Article  CAS  PubMed  Google Scholar 

  • Ludányi A, Eross L, Czirják S, Vajda J, Halász P, Watanabe M et al (2008) Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J Neurosci 28:2976–2990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lumme A, Soinila S, Sadienemi M, Halonen T, Vanhatalo S (2000) Nitric oxide synthase immunoreactivity in the rat hippocampus after status epilepticus induced by perforant pathway stimulation. Brain Res 871:303–310

    Article  CAS  PubMed  Google Scholar 

  • Lupica CR, Hu Y, Devinsky O, Hoffman AF (2017) Cannabinoids as hippocampal network administrators. Neuropharmacology 124:25–37. https://doi.org/10.1016/j.neuropharm.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  • Maa E, Figi P (2014) The case for medical marijuana in epilepsy. Epilepsia 55:783–786

    Article  PubMed  Google Scholar 

  • Maccarrone M, Rossi S, Bari M, De Chiara V, Fezza F, Musella A (2008) Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci 11(2):152–159. https://doi.org/10.1038/nn2042

    Article  CAS  PubMed  Google Scholar 

  • Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA 89(9):3825–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makara JK, Katona I, Nyíri G, Németh B, Ledent C, Watanabe M et al (2007) Involvement of nitric oxide in depolarization-induced suppression of inhibition in hippocampal pyramidal cells during activation of cholinergic receptors. J Neurosci 27(38):10211–10222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manna SS, Umathe SN (2012) Involvement of transient receptor potential vanilloid type 1 channels in the pro-convulsant effect of anandamide in pentylenetetrazole-induced seizures. Epilepsy Res 100(1–2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Marinelli S, Vaughan CW, Christie MJ, Connor M (2002) Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. J Physiol 543:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinelli S, Di Marzo V, Berretta N, Matias I, Maccarrone M, Bernardi G et al (2003) Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. J Neurosci 23:3136–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinelli S, Pacioni S, Bisogno T, Di Marzo V, Prince DA, Huguenard JR et al (2008) The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J Neurosci 28:13532–13541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinelli S, Pacioni S, Cannich A, Marsicano G, Bacci A (2009) Self-modulation of neocortical pyramidal neurons by endocannabinoids. Nat Neurosci 12:1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Marsch R, Foeller E, Rammes G, Bunck M, Kössl M, Holsboer F et al (2007) Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci 27(4):832–839. https://doi.org/10.1523/JNEUROSCI.3303-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–88

    Article  CAS  PubMed  Google Scholar 

  • Menigoz A, Boudes M (2011) The expression pattern of TRPV1 in brain. J Neurosci 31:13025–13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messeguer A, Planells-Cases R, Ferrer-Montiel A (2006) Physiology and pharmacology of the vanilloid receptor. Curr Neuropharm 4(1):1–15

    Article  CAS  Google Scholar 

  • Mezey E, Toth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R et al (2000) Distribution ofmRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci USA 97:3655–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micale V, Cristino L, Tamburella A, Petrosino S, Leggio GM, Drago F, Di Marzo V (2009) Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology 34(3):593–606

    Article  CAS  PubMed  Google Scholar 

  • Min R, Testa-Silva G, Heistek TS, Canto CB, Lodder JC, Bisogno T et al (2010) Diacylglycerol lipase is not involved in depolarization-induced suppression of inhibition at unitary inhibitory connections in mouse hippocampus. J Neurosci 30:2710–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohapatra DP, Nau C (2005) Regulation of Ca2+ -dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280:13424–13432

    Article  CAS  PubMed  Google Scholar 

  • Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R et al (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51(4):455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monory K, Polack M, Remus A, Lutz B, Korte M (2015) Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus. J Neurosci 35:3842. https://doi.org/10.1523/JNEUROSCI.3167-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan NH, Stanford IM, Woodhall GL (2009) Functional CB2 type cannabinoid receptors at CNS synapses. Neuropharmacology 57(4):356–368

    Article  CAS  PubMed  Google Scholar 

  • Muller C, Morales P, Reggio PH (2019) Cannabinoid ligands targeting TRP channels. Front Mol Neurosci 11:1–15. https://doi.org/10.3389/fnmol.2018.00487

    Article  CAS  Google Scholar 

  • Musella A, De Chiara V, Rossi S, Prosperetti C, Bernardi G, Maccarrone M et al (2009) TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci 40(1):89–97. https://doi.org/10.1016/j.mcn.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  • Musella A, De Chiara V, Rossi S, Cavasinni F, Castelli M, Cantarella C et al (2010) Transient receptor potential vanilloid 1 channels control acetylcholine/2-arachidonoylglicerol coupling in the striatum. Neuroscience 167:864–871. https://doi.org/10.1016/j.neuroscience.2010.02.058

    Article  CAS  PubMed  Google Scholar 

  • Navidhamidi M, Ghasemi M, Mehranfard N (2017) Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 28(3):307–334. https://doi.org/10.1515/revneuro-2016-0059

    Article  PubMed  Google Scholar 

  • Nazıroğlu M (2015) TRPV1 channel: a potential drug target for treating epilepsy. Curr Neuropharm 13(2):239–247

    Article  Google Scholar 

  • Németh B, Ledent C, Freund TF, Hájos N (2008) CB1 receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN55,212-2. Neuropharmacology 54:51–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohkuma S, Katsura M (2001) Nitric oxide and peroxynitrite as factors to stimulate neurotransmitter release in the CNS. Prog Neurobiol 64:97–108

    Article  CAS  PubMed  Google Scholar 

  • Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29(3):729–738

    Article  CAS  PubMed  Google Scholar 

  • Okere CO, Kaba H, Higuchi T (2000) Importance of endogenous nitric oxide synthase in the rat hypothalamus and amygdala in mediating the response to capsaicin. J Comp Neurol 423:670–686

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MS, Skinner F, Arshadmansab MF, Garcia I, Mello CF, Knaus HG et al (2010) Altered expression and function of small-conductance (SK) Ca21-activated K1 channels in pilocarpine-treated epileptic rats. Brain Res 1348:187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patwardhan AM, Jeske N, Price TJ, Gamper N, Akopian AN, Hargreaves KM (2006) The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci USA 103(30):11393–11398. https://doi.org/10.1073/pnas.0603861103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perchuk A, Bierbower SM, Canseco-Alba A, Mora Z, Tyrell L, Joshi N et al (2019) Developmental and behavioral effects in neonatal and adult mice following prenatal activation of endocannabinoid receptors by capsaicin. Acta Pharmacol Sin 40(3):418–424. https://doi.org/10.1038/s41401-018-0073-z

    Article  CAS  PubMed  Google Scholar 

  • Peters JH, McDougall SJ, Fawley JA, Smith SM, Andresen MC (2010) Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron 65:657–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64(1):51–68

    Article  CAS  PubMed  Google Scholar 

  • Przegalinski E, Baran L, Siwanowicz J (1996) The role of nitric oxide in chemically- and electrically-induced seizures in mice. Neurosci Lett 217:145–148

    Article  CAS  PubMed  Google Scholar 

  • Puente N, Cui Y, Lassalle O, Lafourcade M, Georges F, Venance L et al (2011) Polymodal activation of the endocannabinoid system in the extended amygdala. Nat Neurosci 14:1542–1547

    Article  CAS  PubMed  Google Scholar 

  • Quesada O, Hirsch J, Ben-Ari Y, Bernard C (1996) Redox sites of NMDA receptors can modulate epileptiform activity in hippocampal slices from kainic acid-treated rats. Neurosci Lett 212:171–174

    Article  CAS  PubMed  Google Scholar 

  • Rizzo V, Ferraro G, Carletti F, Lonobile G, Cannizzaro C, Sardo P (2009) Evidences of cannabinoids-induced modulation of paroxysmal events in an experimental model of partial epilepsy in the rat. Neurosci Lett 462(2):135–139

    Article  CAS  PubMed  Google Scholar 

  • Rizzo V, Carletti F, Gambino G, Schiera G, Cannizzaro C, Ferraro G et al (2014) Role of CB2 receptors and cGMP pathway on the cannabinoid-dependent antiepileptic effects in an in vivo model of partial epilepsy. Epi Res 108(10):1711–1718. https://doi.org/10.1016/j.eplepsyres.2014.10.001

    Article  CAS  Google Scholar 

  • Roberts JC, Davis JB, Benham CD (2004) [3H]Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res 995:176–183

    Article  CAS  PubMed  Google Scholar 

  • Rubino T, Realini N, Castiglioni C, Guidali C, Viganó D, Marras E et al (2008) Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb Cortex 18(6):1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Saffarzadeh F, Eslamizade MJ, Ghadiri T, Modarres Mousavi SM, Hadjighassem M et al (2015) Effects of TRPV1 on the hippocampal synaptic plasticity in the epileptic rat brain. Synapse 69(7):375–383

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Vicente-Sánchez A, Garzón J (2013) Cannabinoid receptors couple to NMDA receptors to reduce the production of NO and the mobilization of zinc induced by glutamate. Antioxid Redox Signal 19(15):1766–1782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sardo P, Carletti F, D’Agostino S, Rizzo V, Ferraro G (2006) Involvement of nitric oxide-soluble guanylyl cyclase pathway in the control of maximal dentate gyrus activation in the rat. J Neural Transm 113(12):1855–1861

    Article  CAS  PubMed  Google Scholar 

  • Sardo P, Ferraro G (2007) Modulatory effects of nitric oxide-active drugs on the anticonvulsant activity of lamotrigine in an experimental model of partial complex epilepsy in the rat. BMC Neurosci 8:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sardo P, D’Agostino S, Rizzo V, Carletti F, Lonobile G, Ferraro G (2009) In the rat maximal dentate activation model of partial complex epilepsy, the anticonvulsant activity of levetiracetam is modulated by nitric oxide-active drugs. J Neural Transm 116(7):831–839

    Article  CAS  PubMed  Google Scholar 

  • Sardo P, Carletti F, D’Agostino S, Rizzo V, Lo Nobile G, Friscia S et al (2011) Nitric oxide-active compounds modulate the intensity of glutamate-evoked responses in the globus pallidus of the rat. Life Sci 88:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Sensi SL, Jeng JM (2004) Rethinking the excitotoxic ionic milieu: the emerging role of Zn (2+) in ischemic neuronal injury. Curr Mol Med 4:87–111

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Thayer S (1999) Delta9-tetrahydrocannabinol acts as a partial agonist to modulate glutamatergic synaptic transmission between rat hippocampal neurons in culture. Mol Pharmacol 55:8–13

    Article  CAS  PubMed  Google Scholar 

  • Shoudai K, Peters JH, McDougall SJ, Fawley JA, Andresen MC (2010) Thermally active TRPV1 tonically drives central spontaneous glutamate release. J Neurosci 30:14470–14475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltesz I, Alger BE, Kzno M, Lee S-H, Lovinger DM, Ohno-Shosaku T et al (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nature Rev Neurosci 16:264–277

    Article  CAS  Google Scholar 

  • Stafstrom CE, Carmant L (2015) Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med 5(6):a022426. https://doi.org/10.1101/cshperspect.a022426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starowicz K, Maione S, Cristino L, Palazzo E, Marabese I, Rossi F et al (2007) Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways. J Neurosci 27:13739–13749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starowicz K, Cristino L, Di Marzo V (2008) TRPV1 receptors in the central nervous system: potential for previously unforeseen therapeutic applications. Curr Pharm Des 14:42–54

    Article  CAS  PubMed  Google Scholar 

  • Storozhuk MV, Zholos AV (2018) TRP channels as novel targets for endogenous ligands: focus on endocannabinoids and nociceptive signalling. Curr Neuropharmacol 16(2):137–150. https://doi.org/10.2174/1570159X15666170424120802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugaya Y, Kano M (2018) Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid. Cell Mol Life Sci 15:2793–2811. https://doi.org/10.1007/s00018-018-2834-8

    Article  CAS  Google Scholar 

  • Sun FJ, Guo W, Zheng DH, Zhang CQ, Li S, Liu SY et al (2013) Increased expression of TRPV1 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J Mol Neurosci 49(1):182–193. https://doi.org/10.1007/s12031-012-9878-2

    Article  CAS  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (2007) Complex regulation of TRPV1 by vanilloids. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades, 6th edn. CRC Press, Boca Raton

    Google Scholar 

  • Tahmasebi L, Komaki A, Karamian R, Shahidi S, Sarihi A, Salehi I et al (2015) The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats. Eur J Pharmacol 757:68–73

    Article  CAS  PubMed  Google Scholar 

  • Toda N, Herman AG (2005) Gastrointestinal function regulation by nitrergic efferent nerves. Pharmacol Rev 57:315–338

    Article  CAS  PubMed  Google Scholar 

  • Toth A, Boczan J, Kedei N, Lizanecz E, Bagi Z, Papp Z et al (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168

    Article  CAS  PubMed  Google Scholar 

  • Twitchell W, Brown S, Mackie K (1997) Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 78:43–501

    Article  CAS  PubMed  Google Scholar 

  • Uliana DL, Hott SC, Lisboa SF, Resstel LB (2016) Dorsolateral periaqueductal gray matter CB1 and TRPV1 receptors exert opposite modulation on expression of contextual fear conditioning. Neuropharmacology 103:257–269

    Article  CAS  PubMed  Google Scholar 

  • van der Stelt M, Di Marzo V (2005) Anandamide as an intracellular messenger regulating ion channel activity. Prostaglandins Other Lipid Mediat 77:111–122

    Article  PubMed  CAS  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K et al (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310(5746):329–332

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Sanchez A, Sanchez-Blazquez P, Rodriguez-Munoz M, Garzon J (2013) Hint1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate nmda receptor activity. Mol Brain 6:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace MJ, Wiley JL, Martin BR, DeLorenzo RJ (2001) Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol 428:51–57

    Article  CAS  PubMed  Google Scholar 

  • Wallace MJ, Martin BR, DeLorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452:295–301

    Article  CAS  PubMed  Google Scholar 

  • Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharm Exp Ther 307(1):129–137

    Article  CAS  Google Scholar 

  • Wang W, Cao X, Liu C, Liu L (2012) Cannabinoid WIN 55,212-2 inhibits TRPV1 in trigeminal ganglion neurons via PKA and PKC pathways. Neurol Sci 33(1):79–85

    Article  PubMed  Google Scholar 

  • Wilson RI, Kunos G, Nicoll RA (2001) Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31:453–462

    Article  CAS  PubMed  Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–659

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Chen SR, Pan HL (2005) Transient receptor potential vanilloid type 1 activation down-regulates voltage-gated calcium channels through calciumdependent calcineurin in sensory neurons. J Biol Chem 280:18142–18151

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Li J (2007) TRPV1 receptor mediates glutamatergic synaptic input to dorsolateral periaqueductal gray (dl-PAG) neurons. J Neurophysiol 97(1):503–511

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Kumamoto E, Furue H, Yoshimura M (1998) Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 255:135–138

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yang H, Wang Z, Varadaraj K, Kumari SS, Mergler S et al (2013) Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury. Cell Signal 25(2):501–511. https://doi.org/10.1016/j.cellsig.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  • Yang K (2016) Postnatal excitability development and innervation by functional transient receptor potential vanilloid 1 (TRPV1) terminals in neurons of the rat spinal sacral dorsal commissural nucleus: an electrophysiological study. Mol Neurobiol 53(9):6033–6042. https://doi.org/10.1007/s12035-015-9510-x

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y et al (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607

    Article  CAS  PubMed  Google Scholar 

  • Yoshino Y, Ochi S, Yamazaki K, Nakata S, Iga JI, Ueno SI (2017) Endothelial nitric oxide synthase in rat brain is downregulated by sub-chronic antidepressant treatment. Psychopharmacology 234(11):1663–1669. https://doi.org/10.1007/s00213-017-4567-z

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20:223–230. https://doi.org/10.1016/J.NIOX.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  • Zhou QG, Zhu XH, Nemes AD, Zhu DY (2018) Neuronal nitric oxide synthase and affective disorders. IBRO Rep 5:116–132. https://doi.org/10.1016/j.ibror.2018.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu LJ, Li TY, Luo CX, Jiang N, Chang L, Lin YH et al (2014) CAPON-nNOS coupling can serve as a target for developing new anxiolytics. Nat Med 20:1050–1054. https://doi.org/10.1038/nm.3644

    Article  CAS  PubMed  Google Scholar 

  • Zhuang SY, Bridges D, Grigorenko E, McCloud S, Boon A, Hampson RE et al (2005) Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology 48:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Zschenderlein C, Gebhardt C, von Bohlen Und Halbach O, Kulisch C, Albrecht D (2011) Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1. PLoS ONE 6:e16116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuditta Gambino.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical approval

This is a review of the literature with no animal or human study that could require an ethical approval.

Informed consent

This is a review with no experiments performed on humans. All authors of the review agree with the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of the article was revised. First and surname tagging of all authors in author group were corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambino, G., Rizzo, V., Giglia, G. et al. Cannabinoids, TRPV and nitric oxide: the three ring circus of neuronal excitability. Brain Struct Funct 225, 1–15 (2020). https://doi.org/10.1007/s00429-019-01992-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01992-9

Keywords

Navigation