Skip to main content
Log in

Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid signaling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Forsgren L, Beghi E, Oun A, Sillanpää M (2005) The epidemiology of epilepsy in Europe—a systematic review. Eur J Neurol 12:245–253. https://doi.org/10.1111/j.1468-1331.2004.00992.x

    Article  PubMed  CAS  Google Scholar 

  2. Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR (2011) Incidence of epilepsy: a systematic review and meta-analysis. Neurology 77:1005–1012. https://doi.org/10.1212/WNL.0b013e31822cfc90

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rogawski MA, Löscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5:553–564. https://doi.org/10.1038/nrn1430

    Article  PubMed  CAS  Google Scholar 

  4. Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P (2012) Patterns of treatment response in newly diagnosed epilepsy. Neurology 78:1548–1554. https://doi.org/10.1212/WNL.0b013e3182563b19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Porter BE, Jacobson C (2013) Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 29:574–577. https://doi.org/10.1016/j.yebeh.2013.08.037

    Article  PubMed  PubMed Central  Google Scholar 

  6. Soltesz I, Alger BE, Kano M, Lee SH, Lovinger DM, Ohno-Shosaku T, Watanabe M (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16:264–277. https://doi.org/10.1038/nrn3937

    Article  PubMed  CAS  Google Scholar 

  7. Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930. https://doi.org/10.1038/nm.f.1869

    Article  PubMed  CAS  Google Scholar 

  8. Gaoni Y, Mechoulam R (1964) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647. https://doi.org/10.1021/ja01062a046

    Article  CAS  Google Scholar 

  9. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564. https://doi.org/10.1038/346561a0

    Article  PubMed  CAS  Google Scholar 

  10. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65. https://doi.org/10.1038/365061a0

    Article  PubMed  CAS  Google Scholar 

  11. Devane WA, Hanuš L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  PubMed  CAS  Google Scholar 

  12. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    Article  PubMed  CAS  Google Scholar 

  13. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90. https://doi.org/10.1016/0006-2952(95)00109-D

    Article  PubMed  CAS  Google Scholar 

  14. Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180. https://doi.org/10.1016/S0163-7258(97)82001-3

    Article  PubMed  CAS  Google Scholar 

  15. Daniel H, Crepel F (2001) Control of Ca2+ influx by cannabinoid and metabotropic glutamate receptors in rat cerebellar cortex requires K+ channels. J Physiol 537:793–800. https://doi.org/10.1111/j.1469-7793.2001.00793.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Huang CC, Lo SW, Hsu KS (2001) Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons. J Physiol 532:731–748. https://doi.org/10.1111/j.1469-7793.2001.0731e.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29:729–738. https://doi.org/10.1016/S0896-6273(01)00247-1

    Article  PubMed  CAS  Google Scholar 

  18. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592. https://doi.org/10.1038/35069076

    Article  PubMed  CAS  Google Scholar 

  19. Kreitzer AC, Regehr WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727. https://doi.org/10.1016/S0896-6273(01)00246-X

    Article  PubMed  CAS  Google Scholar 

  20. Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446–451. https://doi.org/10.1038/nn832

    Article  PubMed  CAS  Google Scholar 

  21. Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ (2002) Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA 99:8384–8388. https://doi.org/10.1073/pnas.122149199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534. https://doi.org/10.1038/nature00839

    Article  PubMed  CAS  Google Scholar 

  23. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, Gangadharan U, Hobbs C, Di Marzo V, Doherty P (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468. https://doi.org/10.1083/jcb.200305129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 65:320–327. https://doi.org/10.1016/j.neuron.2010.01.021

    Article  PubMed  CAS  Google Scholar 

  25. Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, Shen R, Zhang MY, Strassle BW, Lu P, Mark L, Piesla MJ, Deng K, Kouranova EV, Ring RH, Whiteside GT, Bates B, Walsh FS, Williams G, Pangalos MN, Samad TA, Doherty P (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30:2017–2024. https://doi.org/10.1523/JNEUROSCI.5693-09.2010

    Article  PubMed  CAS  Google Scholar 

  26. Luchicchi A, Pistis M (2012) Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol Neurobiol 46:374–392. https://doi.org/10.1007/s12035-012-8299-0

    Article  PubMed  CAS  Google Scholar 

  27. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380. https://doi.org/10.1152/physrev.00019.2008

    Article  PubMed  CAS  Google Scholar 

  28. Mathur BN, Tanahira C, Tamamaki N, Lovinger DM (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16:1275–1283. https://doi.org/10.1038/nn.3478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Khlaifia A, Farah H, Gackiere F, Tell F (2013) Anandamide, cannabinoid type 1 receptor, and NMDA receptor activation mediate non-Hebbian presynaptically expressed long-term depression at the first central synapse for visceral afferent fibers. J Neurosci 33:12627–12637. https://doi.org/10.1523/JNEUROSCI.1028-13.2013

    Article  PubMed  CAS  Google Scholar 

  30. Heifets BD, Castillo PE (2009) Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 71:283–306. https://doi.org/10.1146/annurev.physiol.010908.163149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76:70–81. https://doi.org/10.1016/j.neuron.2012.09.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ohno-Shosaku T, Hashimotodani Y, Ano M, Takeda S, Tsubokawa H, Kano M (2007) Endocannabinoid signalling triggered by NMDA receptor-mediated calcium entry into rat hippocampal neurons. J Physiol 584:407–418. https://doi.org/10.1113/jphysiol.2007.137505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M (2005) Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cβ4 signaling cascade in the cerebellum. J Neurosci 25:6826–6835. https://doi.org/10.1523/JNEUROSCI.0945-05.2005

    Article  PubMed  CAS  Google Scholar 

  34. Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Ca2+-assisted receptor-driven endocannabinoid release: mechanisms that associate presynaptic and postsynaptic activities. Curr Opin Neurobiol 17:360–365. https://doi.org/10.1016/j.conb.2007.03.012

    Article  PubMed  CAS  Google Scholar 

  35. Ohno-Shosaku T, Tanimura A, Hashimotodani Y, Kano M (2012) Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist 18:119–132. https://doi.org/10.1177/1073858410397377

    Article  PubMed  CAS  Google Scholar 

  36. Maejima T, Hashimoto K, Yoshida T, Aiba A, Kano M (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31:463–475. https://doi.org/10.1016/S0896-6273(01)00375-0

    Article  PubMed  CAS  Google Scholar 

  37. Fukudome Y, Ohno-Shosaku T, Matsui M, Omori Y, Fukaya M, Tsubokawa H, Taketo MM, Watanabe M, Manabe T, Kano M (2004) Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur J Neurosci 19:2682–2692. https://doi.org/10.1111/j.0953-816X.2004.03384.x

    Article  PubMed  Google Scholar 

  38. Jung KM, Mangieri R, Stapleton C, Kim J, Fegley D, Wallace M, Mackie K, Piomelli D (2005) Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors. Mol Pharmacol 68:1196–1202. https://doi.org/10.1124/mol.105.013961

    Article  PubMed  CAS  Google Scholar 

  39. Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K, Maejima T, Araishi K, Shin HS, Kano M (2005) Phospholipase Cβ serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45:257–268. https://doi.org/10.1016/j.neuron.2005.01.004

    Article  PubMed  CAS  Google Scholar 

  40. Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356. https://doi.org/10.1016/j.chembiol.2007.11.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kozak KR, Rowlinson SW, Marnett LJ (2000) Oxygenation of the endocannabinoid, 2-arachidonoylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem 275:33744–33749. https://doi.org/10.1074/jbc.M007088200

    Article  PubMed  CAS  Google Scholar 

  42. Hillard CJ (2000) Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 61:3–18. https://doi.org/10.1016/S0090-6980(00)00051-4

    Article  PubMed  CAS  Google Scholar 

  43. Schmitz SK, King C, Kortleven C, Huson V, Kroon T, Kevenaar JT, Schut D, Saarloos I, Hoetjes JP, de Wit H, Stiedl O, Spijker S, Li KW, Mansvelder HD, Smit AB, Cornelisse LN, Verhage M, Toonen RF (2016) Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18-1. EMBO J 35:1236–1250. https://doi.org/10.15252/embj.201592244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pan B, Wang W, Zhong P, Blankman JL, Cravatt BF, Liu QS (2011) Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice. J Neurosci 31:13420–13430. https://doi.org/10.1523/JNEUROSCI.2075-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tanimura A, Uchigashima M, Yamazaki M, Uesaka N, Mikuni T, Abe M, Hashimoto K, Watanabe M, Sakimura K, Kano M (2012) Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proc Natl Acad Sci USA 109:12195–12200. https://doi.org/10.1073/pnas.1204404109

    Article  PubMed  PubMed Central  Google Scholar 

  46. Uchigashima M, Yamazaki M, Yamasaki M, Tanimura A, Sakimura K, Kano M, Watanabe M (2011) Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. J Neurosci 31:7700–7714. https://doi.org/10.1523/JNEUROSCI.5665-10.2011

    Article  PubMed  CAS  Google Scholar 

  47. Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38:461–472. https://doi.org/10.1016/S0896-6273(03)00235-6

    Article  PubMed  CAS  Google Scholar 

  48. Chevaleyre V, Heifets BD, Kaeser PS, Südhof TC, Castillo PE (2007) Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1α. Neuron 54:801–812. https://doi.org/10.1016/j.neuron.2007.05.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Heifets BD, Chevaleyre V, Castillo PE (2008) Interneuron activity controls endocannabinoid-mediated presynaptic plasticity through calcineurin. Proc Natl Acad Sci USA 105:10250–10255. https://doi.org/10.1073/pnas.0711880105

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yasuda H, Huang Y, Tsumoto T (2008) Regulation of excitability and plasticity by endocannabinoids and PKA in developing hippocampus. Proc Natl Acad Sci USA 105:3106–3111. https://doi.org/10.1073/pnas.0708349105

    Article  PubMed  PubMed Central  Google Scholar 

  51. Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE (2016) Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92:479–492. https://doi.org/10.1016/j.neuron.2016.09.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Losonczy A, Biró AA, Nusser Z (2004) Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. Proc Natl Acad Sci USA 101:1362–1367. https://doi.org/10.1073/pnas.0304752101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Azad SC, Monory K, Marsicano G, Cravatt BF, Lutz B, Zieglgänsberger W, Rammes G (2004) Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J Neurosci 24:9953–9961. https://doi.org/10.1523/JNEUROSCI.2134-04.2004

    Article  PubMed  CAS  Google Scholar 

  54. Chávez AE, Chiu CQ, Castillo PE (2010) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci 13:1511–1518. https://doi.org/10.1038/nn.2684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13:1519–1525. https://doi.org/10.1038/nn.2685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cadas H, di Tomaso E, Piomelli D (1997) Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J Neurosci 17:1226–1242

    Article  PubMed  CAS  Google Scholar 

  57. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305. https://doi.org/10.1074/jbc.M306642200

    Article  PubMed  CAS  Google Scholar 

  58. Leishman E, Mackie K, Luquet S, Bradshaw HB (2016) Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. Biochim Biophys Acta 1861:491–500. https://doi.org/10.1016/j.bbalip.2016.03.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87. https://doi.org/10.1038/384083a0

    Article  PubMed  CAS  Google Scholar 

  60. Yu M, Ives D, Ramesha CS (1997) Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem 272:21181–21186

    Article  PubMed  CAS  Google Scholar 

  61. Li Y, Kim J (2015) Neuronal expression of CB2 cannabinoid receptor mRNAs in the mouse hippocampus. Neuroscience 311:253–267. https://doi.org/10.1016/j.neuroscience.2015.10.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Stempel AV, Stumpf A, Zhang HY, Özdoğan T, Pannasch U, Theis AK, Otte DM, Wojtalla A, Rácz I, Ponomarenko A, Xi ZX, Zimmer A, Schmitz D (2016) Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron 90:795–809. https://doi.org/10.1016/j.neuron.2016.03.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Li Y, Kim J (2016) Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus. Hippocampus 26:275–281. https://doi.org/10.1002/hipo.22558

    Article  PubMed  CAS  Google Scholar 

  64. Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX (2014) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA 111:E5007–E5015. https://doi.org/10.1073/pnas.1413210111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ludányi A, Erőss L, Czirják S, Vajda J, Halász P, Watanabe M, Palkovits M, Maglóczky Z, Freund TF, Katona I (2008) Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J Neurosci 28:2976–2990. https://doi.org/10.1523/JNEUROSCI.4465-07.2008

    Article  PubMed  CAS  Google Scholar 

  66. Romigi A, Bari M, Placidi F, Marciani MG, Malaponti M, Torelli F, Izzi F, Prosperetti C, Zannino S, Corte F, Chiaramonte C, Maccarrone M (2010) Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia 51:768–772. https://doi.org/10.1111/j.1528-1167.2009.02334.x

    Article  PubMed  CAS  Google Scholar 

  67. Maglóczky Z, Tóth K, Karlócai R, Nagy S, Erőss L, Czirják S, Vajda J, Rásonyi G, Kelemen A, Juhos V, Halász P, Mackie K, Freund TF (2010) Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans. Epilepsia 51(Suppl 3):115–120. https://doi.org/10.1111/j.1528-1167.2010.02624.x

    Article  PubMed  PubMed Central  Google Scholar 

  68. Katona I, Sperlágh B, Maglóczky Z, Sántha E, Köfalvi A, Czirják S, Mackie K, Vizi ES, Freund TF (2000) GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience 100:797–804. https://doi.org/10.1016/S0306-4522(00)00286-4

    Article  PubMed  CAS  Google Scholar 

  69. Goffin K, Van Paesschen W, Van Laere K (2011) In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain 134:1033–1040. https://doi.org/10.1093/brain/awq385

    Article  PubMed  Google Scholar 

  70. Meng XD, Wei D, Li J, Kang JJ, Wu C, Ma L, Yang F, Zhu GM, Ou-Yang TP, Liu YY, Jiang W (2014) Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi. Int J Clin Exp Pathol 7:2825–2837

    PubMed  PubMed Central  Google Scholar 

  71. Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F, Koehl M, Abrous DN, Mendizabal-Zubiaga J, Grandes P, Liu Q, Bai G, Wang W, Xiong L, Ren W, Marsicano G, Zhang X (2012) Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148:1039–1050. https://doi.org/10.1016/j.cell.2012.01.037

    Article  PubMed  CAS  Google Scholar 

  72. Desjardins P, Sauvageau A, Bouthillier A, Navarro D, Hazell AS, Rose C, Butterworth RF (2003) Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem Int 42:299–303

    Article  PubMed  CAS  Google Scholar 

  73. Kira R, Ishizaki Y, Torisu H, Sanefuji M, Takemoto M, Sakamoto K, Matsumoto S, Yamaguchi Y, Yukaya N, Sakai Y, Gondo K, Hara T (2010) Genetic susceptibility to febrile seizures: case–control association studies. Brain Dev 32:57–63. https://doi.org/10.1016/j.braindev.2009.09.018

    Article  PubMed  Google Scholar 

  74. Smith DR, Stanley CM, Foss T, Boles RG, McKernan K (2017) Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans. PLoS One 12:e0187926. https://doi.org/10.1371/journal.pone.0187926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021. https://doi.org/10.1038/2141020a0

    Article  PubMed  CAS  Google Scholar 

  76. Morimoto K, Katayama K, Inoue K, Sato K (1991) Effects of competitive and noncompetitive NMDA receptor antagonists on kindling and LTP. Pharmacol Biochem Behav 40:893–899

    Article  PubMed  CAS  Google Scholar 

  77. Pan YZ, Rutecki PA (2014) Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation. Neuroscience 275:22–32. https://doi.org/10.1016/j.neuroscience.2014.05.062

    Article  PubMed  CAS  Google Scholar 

  78. Renaud J, Emond M, Meilleur S, Psarropoulou C, Carmant L (2002) AIDA, a class I metabotropic glutamate-receptor antagonist limits kainate-induced hippocampal dysfunction. Epilepsia 43:1306–1317

    Article  PubMed  CAS  Google Scholar 

  79. Weiss SR, Li XL, Rosen JB, Li H, Heynen T, Post RM (1995) Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 6:2171–2176

    Article  PubMed  CAS  Google Scholar 

  80. Jalilifar M, Yadollahpour A, Moazedi AA, Ghotbeddin Z (2017) Low frequency electrical stimulation either prior to or after rapid kindling stimulation inhibits the kindling-induced epileptogenesis. Biomed Res Int 2017:8623743. https://doi.org/10.1155/2017/8623743

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sim-Selley LJ, Schechter NS, Rorrer WK, Dalton GD, Hernandez J, Martin BR, Selley DE (2006) Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol Pharmacol 70:986–996. https://doi.org/10.1124/mol.105.019612

    Article  PubMed  CAS  Google Scholar 

  82. Schlosburg JE, Kinsey SG, Ignatowska-Jankowska B, Ramesh D, Abdullah RA, Tao Q, Booker L, Long JZ, Selley DE, Cravatt BF, Lichtman AH (2014) Prolonged monoacylglycerol lipase blockade causes equivalent cannabinoid receptor type 1 receptor-mediated adaptations in fatty acid amide hydrolase wild-type and knockout mice. J Pharmacol Exp Ther 350:196–204. https://doi.org/10.1124/jpet.114.212753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kinsey SG, Wise LE, Ramesh D, Abdullah R, Selley DE, Cravatt BF, Lichtman AH (2013) Repeated low-dose administration of the monoacylglycerol lipase inhibitor JZL184 retains cannabinoid receptor type 1-mediated antinociceptive and gastroprotective effects. J Pharmacol Exp Ther 345:492–501. https://doi.org/10.1124/jpet.112.201426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sánchez AJ, García-Merino A (2012) Neuroprotective agents: cannabinoids. Clin Immunol 142:57–67. https://doi.org/10.1016/j.clim.2011.02.010

    Article  PubMed  CAS  Google Scholar 

  85. Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 307:129–137. https://doi.org/10.1124/jpet.103.051920

    Article  PubMed  CAS  Google Scholar 

  86. Fezza F, Marrone MC, Avvisati R, Di Tommaso M, Lanuti M, Rapino C, Mercuri NB, Maccarrone M, Marinelli S (2014) Distinct modulation of the endocannabinoid system upon kainic acid-induced in vivo seizures and in vitro epileptiform bursting. Mol Cell Neurosci 62:1–9. https://doi.org/10.1016/j.mcn.2014.07.003

    Article  PubMed  CAS  Google Scholar 

  87. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutiérrez SO, van der Stelt M, López-Rodriguez ML, Casanova E, Schütz G, Zieglgänsberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88. https://doi.org/10.1126/science.1088208

    Article  PubMed  CAS  Google Scholar 

  88. Lerner R, Post J, Loch S, Lutz B, Bindila L (2017) Targeting brain and peripheral plasticity of the lipidome in acute kainic acid-induced epileptic seizures in mice via quantitative mass spectrometry. Biochim Biophys Acta 1862:255–267. https://doi.org/10.1016/j.bbalip.2016.11.008

    Article  PubMed  CAS  Google Scholar 

  89. Lourenço J, Matias I, Marsicano G, Mulle C (2011) Pharmacological activation of kainate receptors drives endocannabinoid mobilization. J Neurosci 31:3243–3248. https://doi.org/10.1523/JNEUROSCI.3512-10.2011

    Article  PubMed  CAS  Google Scholar 

  90. Sugaya Y, Yamazaki M, Uchigashima M, Kobayashi K, Watanabe M, Sakimura K, Kano M (2016) Crucial roles of the endocannabinoid 2-arachidonoylglycerol in the suppression of epileptic seizures. Cell Rep 16:1405–1415. https://doi.org/10.1016/j.celrep.2016.06.083

    Article  PubMed  CAS  Google Scholar 

  91. Hansen SL, Nielsen AH, Knudsen KE, Artmann A, Petersen G, Kristiansen U, Hansen SH, Hansen HS (2009) Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus. Neurochem Int 54:199–204. https://doi.org/10.1016/j.neuint.2008.10.012

    Article  PubMed  CAS  Google Scholar 

  92. von Rüden EL, Bogdanovic RM, Wotjak CT, Potschka H (2015) Inhibition of monoacylglycerol lipase mediates a cannabinoid 1-receptor dependent delay of kindling progression in mice. Neurobiol Dis 77:238–245. https://doi.org/10.1016/j.nbd.2015.03.016

    Article  CAS  Google Scholar 

  93. Griebel G, Pichat P, Beeské S, Leroy T, Redon N, Jacquet A, Françon D, Bert L, Even L, Lopez-Grancha M, Tolstykh T, Sun F, Yu Q, Brittain S, Arlt H, He T, Zhang B, Wiederschain D, Bertrand T, Houtmann J, Rak A, Vallée F, Michot N, Augé F, Menet V, Bergis OE, George P, Avenet P, Mikol V, Didier M, Escoubet J (2015) Selective blockade of the hydrolysis of the endocannabinoid 2-arachidonoylglycerol impairs learning and memory performance while producing antinociceptive activity in rodents. Sci Rep 5:7642. https://doi.org/10.1038/srep07642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kallendrusch S, Hobusch C, Ehrlich A, Nowicki M, Ziebell S, Bechmann I, Geisslinger G, Koch M, Dehghani F (2012) Intrinsic up-regulation of 2-AG favors an area specific neuronal survival in different in vitro models of neuronal damage. PLoS One 7:e51208. https://doi.org/10.1371/journal.pone.0051208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ma L, Wang L, Yang F, Meng XD, Wu C, Ma H, Jiang W (2014) Disease-modifying effects of RHC80267 and JZL184 in a pilocarpine mouse model of temporal lobe epilepsy. CNS Neurosci Ther 20:905–915. https://doi.org/10.1111/cns.12302

    Article  PubMed  CAS  Google Scholar 

  96. Blair RE, Deshpande LS, Sombati S, Elphick MR, Martin BR, DeLorenzo RJ (2009) Prolonged exposure to WIN55, 212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy. Neuropharmacology 57:208–218. https://doi.org/10.1016/j.neuropharm.2009.06.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Blair RE, Deshpande LS, Sombati S, Falenski KW, Martin BR, DeLorenzo RJ (2006) Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. J Pharmacol Exp Ther 317:1072–1078. https://doi.org/10.1124/jpet.105.100354

    Article  PubMed  CAS  Google Scholar 

  98. Deshpande LS, Sombati S, Blair RE, Carter DS, Martin BR, DeLorenzo RJ (2007) Cannabinoid CB1 receptor antagonists cause status epilepticus-like activity in the hippocampal neuronal culture model of acquired epilepsy. Neurosci Lett 411:11–16. https://doi.org/10.1016/j.neulet.2006.09.046

    Article  PubMed  CAS  Google Scholar 

  99. Wendt H, Soerensen J, Wotjak CT, Potschka H (2011) Targeting the endocannabinoid system in the amygdala kindling model of temporal lobe epilepsy in mice. Epilepsia 52:e62–e65. https://doi.org/10.1111/j.1528-1167.2011.03079.x

    Article  PubMed  Google Scholar 

  100. Mikheeva IB, Shubina L, Matveeva N, Pavlik LL, Kitchigina VF (2017) Fatty acid amide hydrolase inhibitor URB597 may protect against kainic acid-induced damage to hippocampal neurons: dependence on the degree of injury. Epilepsy Res 137:84–94. https://doi.org/10.1016/j.eplepsyres.2017.09.017

    Article  PubMed  CAS  Google Scholar 

  101. Clement AB, Hawkins EG, Lichtman AH, Cravatt BF (2003) Increased seizure susceptibility and proconvulsant activity of anandamide in mice lacking fatty acid amide hydrolase. J Neurosci 23:3916–3923

    Article  PubMed  CAS  Google Scholar 

  102. Falenski KW, Blair RE, Sim-Selley LJ, Martin BR, DeLorenzo RJ (2007) Status epilepticus causes a long-lasting redistribution of hippocampal cannabinoid type 1 receptor expression and function in the rat pilocarpine model of acquired epilepsy. Neuroscience 146:1232–1244. https://doi.org/10.1016/j.neuroscience.2007.01.065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Falenski KW, Carter DS, Harrison AJ, Martin BR, Blair RE, DeLorenzo RJ (2009) Temporal characterization of changes in hippocampal cannabinoid CB1 receptor expression following pilocarpine-induced status epilepticus. Brain Res 1262:64–72. https://doi.org/10.1016/j.brainres.2009.01.036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Chen K, Ratzliff A, Hilgenberg L, Gulyás A, Freund TF, Smith M, Dinh TP, Piomelli D, Mackie K, Soltesz I (2003) Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39:599–611. https://doi.org/10.1016/S0896-6273(03)00499-9

    Article  PubMed  CAS  Google Scholar 

  105. Chen K, Neu A, Howard AL, Földy C, Echegoyen J, Hilgenberg L, Smith M, Mackie K, Soltesz I (2007) Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 27:46–58. https://doi.org/10.1523/JNEUROSCI.3966-06.2007

    Article  PubMed  CAS  Google Scholar 

  106. Son MH, Kim HD, Chae YN, Kim MK, Shin CY, Ahn GJ, Choi SH, Yang EK, Park KJ, Chae HW, Moon HS, Kim SH, Shin YG, Yoon SH (2010) Peripherally acting CB1-receptor antagonist: the relative importance of central and peripheral CB1 receptors in adiposity control. Int J Obes (Lond) 34:547–556. https://doi.org/10.1038/ijo.2009.253

    Article  CAS  Google Scholar 

  107. Padwal RS, Majumdar SR (2007) Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369:71–77. https://doi.org/10.1016/S0140-6736(07)60033-6

    Article  PubMed  CAS  Google Scholar 

  108. Feng B, Tang Y, Chen B, Xu C, Wang Y, Dai Y, Wu D, Zhu J, Wang S, Zhou Y, Shi L, Hu W, Zhang X, Chen Z (2016) Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci Rep 6:21931. https://doi.org/10.1038/srep21931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Christensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, Vestergaard M (2009) Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet 373:1105–1110. https://doi.org/10.1016/S0140-6736(09)60214-2

    Article  PubMed  Google Scholar 

  110. Echegoyen J, Armstrong C, Morgan RJ, Soltesz I (2009) Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res 85:123–127. https://doi.org/10.1016/j.eplepsyres.2009.02.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Di Maio R, Cannon JR, Greenamyre JT (2015) Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiol Dis 73:356–365. https://doi.org/10.1016/j.nbd.2014.10.018

    Article  PubMed  CAS  Google Scholar 

  112. von Rüden EL, Jafari M, Bogdanovic RM, Wotjak CT, Potschka H (2015) Analysis in conditional cannabinoid 1 receptor-knockout mice reveals neuronal subpopulation-specific effects on epileptogenesis in the kindling paradigm. Neurobiol Dis 73:334–347. https://doi.org/10.1016/j.nbd.2014.08.001

    Article  CAS  Google Scholar 

  113. Rowley S, Sun X, Lima IV, Tavenier A, de Oliveira ACP, Dey SK, Danzer SC (2017) Cannabinoid receptor 1/2 double-knockout mice develop epilepsy. Epilepsia 58:e162–e166. https://doi.org/10.1111/epi.13930

    Article  PubMed  CAS  Google Scholar 

  114. Guggenhuber S, Romo-Parra H, Bindila L, Leschik J, Lomazzo E, Remmers F, Zimmermann T, Lerner R, Klugmann M, Pape HC, Lutz B (2015) Impaired 2-AG signaling in hippocampal glutamatergic neurons: aggravation of anxiety-like behavior and unaltered seizure susceptibility. Int J Neuropsychopharmacol 19:1–13. https://doi.org/10.1093/ijnp/pyv091

    Article  CAS  Google Scholar 

  115. Steindel F, Lerner R, Häring M, Ruehle S, Marsicano G, Lutz B, Monory K (2013) Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus. J Neurochem 124:795–807. https://doi.org/10.1111/jnc.12137

    Article  PubMed  CAS  Google Scholar 

  116. Ohno-Shosaku T, Tsubokawa H, Mizushima I, Yoneda N, Zimmer A, Kano M (2002) Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses. J Neurosci 22:3864–3872. https://doi.org/10.1523/JNEUROSCI.22-10-03864.2002

    Article  PubMed  CAS  Google Scholar 

  117. Naydenov AV, Horne EA, Cheah CS, Swinney K, Hsu KL, Cao JK, Marrs WR, Blankman JL, Tu S, Cherry AE, Fung S, Wen A, Li W, Saporito MS, Selley DE, Cravatt BF, Oakley JC, Stella N (2014) ABHD6 blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in R6/2 mice. Neuron 83:361–371. https://doi.org/10.1016/j.neuron.2014.06.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sigel E, Baur R, Rácz I, Marazzi J, Smart TG, Zimmer A, Gertsch J (2011) The major central endocannabinoid directly acts at GABAA receptors. Proc Natl Acad Sci USA 108:18150–18155. https://doi.org/10.1073/pnas.1113444108

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schwenk J, Harmel N, Brechet A, Zolles G, Berkefeld H, Müller CS, Bildl W, Baehrens D, Hüber B, Kulik A, Klöcker N, Schulte U, Fakler B (2012) High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes. Neuron 74:621–633. https://doi.org/10.1016/j.neuron.2012.03.034

    Article  PubMed  CAS  Google Scholar 

  120. Wei M, Zhang J, Jia M, Yang C, Pan Y, Li S, Luo Y, Zheng J, Ji J, Chen J, Hu X, Xiong J, Shi Y, Zhang C (2016) α/β-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors. Proc Natl Acad Sci USA 113:E2695–E2704. https://doi.org/10.1073/pnas.1524589113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Wallace MJ, Martin BR, DeLorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452:295–301. https://doi.org/10.1016/S0014-2999(02)02331-2

    Article  PubMed  CAS  Google Scholar 

  122. Karanian DA, Karim SL, Wood JT, Williams JS, Lin S, Makriyannis A, Bahr BA (2007) Endocannabinoid enhancement protects against kainic acid-induced seizures and associated brain damage. J Pharmacol Exp Ther 322:1059–1066. https://doi.org/10.1124/jpet.107.120147

    Article  PubMed  CAS  Google Scholar 

  123. Vilela LR, Medeiros DC, Rezende GH, de Oliveira AC, Moraes MF, Moreira FA (2013) Effects of cannabinoids and endocannabinoid hydrolysis inhibition on pentylenetetrazole-induced seizure and electroencephalographic activity in rats. Epilepsy Res 104:195–202. https://doi.org/10.1016/j.eplepsyres.2012.11.006

    Article  PubMed  CAS  Google Scholar 

  124. Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129:227–230. https://doi.org/10.1038/sj.bjp.0703050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Lee SH, Ledri M, Tóth B, Marchionni I, Henstridge CM, Dudok B, Kenesei K, Barna L, Szabó SI, Renkecz T, Oberoi M, Watanabe M, Limoli CL, Horvai G, Soltesz I, Katona I (2015) Multiple forms of endocannabinoid and endovanilloid signaling regulate the tonic control of GABA release. J Neurosci 35:10039–10057. https://doi.org/10.1523/JNEUROSCI.4112-14.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Manna SS, Umathe SN (2012) Involvement of transient receptor potential vanilloid type 1 channels in the pro-convulsant effect of anandamide in pentylenetetrazole-induced seizures. Epilepsy Res 100:113–124. https://doi.org/10.1016/j.eplepsyres.2012.02.003

    Article  PubMed  CAS  Google Scholar 

  127. Wada JA, Wake A, Sato M, Corcoran ME (1975) Antiepileptic and prophylactic effects of tetrahydrocannabinols in amygdaloid kindled cats. Epilepsia 16:503–510. https://doi.org/10.1111/j.1528-1157.1975.tb06080.x

    Article  PubMed  CAS  Google Scholar 

  128. Boggan WO, Steele RA, Freedman DX (1973) Δ9-tetrahydrocannabinol effect on audiogenic seizure susceptibility. Psychopharmacologia 29:101–106. https://doi.org/10.1007/BF00422641

    Article  PubMed  CAS  Google Scholar 

  129. Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein JL, Goebbels S, Nave KA, During M, Klugmann M, Wölfel B, Dodt HU, Zieglgänsberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G, Lutz B (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455–466. https://doi.org/10.1016/j.neuron.2006.07.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Guggenhuber S, Monory K, Lutz B, Klugmann M (2010) AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS One 5:e15707. https://doi.org/10.1371/journal.pone.0015707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ruehle S, Remmers F, Romo-Parra H, Massa F, Wickert M, Wörtge S, Häring M, Kaiser N, Marsicano G, Pape HC, Lutz B (2013) Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions. J Neurosci 33:10264–10277. https://doi.org/10.1523/JNEUROSCI.4171-12.2013

    Article  PubMed  CAS  Google Scholar 

  132. Kow RL, Jiang K, Naydenov AV, Le JH, Stella N, Nathanson NM (2014) Modulation of pilocarpine-induced seizures by cannabinoid receptor 1. PLoS One 9:e95922. https://doi.org/10.1371/journal.pone.0095922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Carletti F, Gambino G, Rizzo V, Ferraro G, Sardo P (2015) Cannabinoid and nitric oxide signaling interplay in the modulation of hippocampal hyperexcitability: study on electrophysiological and behavioral models of temporal lobe epilepsy in the rat. Neuroscience 303:149–159. https://doi.org/10.1016/j.neuroscience.2015.06.047

    Article  PubMed  CAS  Google Scholar 

  134. Rizzo V, Ferraro G, Carletti F, Lonobile G, Cannizzaro C, Sardo P (2009) Evidences of cannabinoids-induced modulation of paroxysmal events in an experimental model of partial epilepsy in the rat. Neurosci Lett 462:135–139. https://doi.org/10.1016/j.neulet.2009.07.014

    Article  PubMed  CAS  Google Scholar 

  135. Wallace MJ, Wiley JL, Martin BR, DeLorenzo RJ (2001) Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol 428:51–57. https://doi.org/10.1016/S0014-2999(01)01243-2

    Article  PubMed  CAS  Google Scholar 

  136. Naderi N, Ahmad-Molaei L, Aziz Ahari F, Motamedi F (2011) Modulation of anticonvulsant effects of cannabinoid compounds by GABAA receptor agonist in acute pentylenetetrazole model of seizure in rat. Neurochem Res 36:1520–1525. https://doi.org/10.1007/s11064-011-0479-1

    Article  PubMed  CAS  Google Scholar 

  137. Rizzo V, Carletti F, Gambino G, Schiera G, Cannizzaro C, Ferraro G, Sardo P (2014) Role of CB2 receptors and cGMP pathway on the cannabinoid-dependent antiepileptic effects in an in vivo model of partial epilepsy. Epilepsy Res 108:1711–1718. https://doi.org/10.1016/j.eplepsyres.2014.10.001

    Article  PubMed  CAS  Google Scholar 

  138. Aghaei I, Rostampour M, Shabani M, Naderi N, Motamedi F, Babaei P, Khakpour-Taleghani B (2015) Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors. Epilepsy Res 117:23–28. https://doi.org/10.1016/j.eplepsyres.2015.08.010

    Article  PubMed  CAS  Google Scholar 

  139. de Carvalho CR, Hoeller AA, Franco PL, Martini AP, Soares FM, Lin K, Prediger RD, Whalley BJ, Walz R (2016) The cannabinoid CB2 receptor-specific agonist AM1241 increases pentylenetetrazole-induced seizure severity in Wistar rats. Epilepsy Res 127:160–167. https://doi.org/10.1016/j.eplepsyres.2016.08.011

    Article  PubMed  CAS  Google Scholar 

  140. Rosenberg EC, Tsien RW, Whalley BJ, Devinsky O (2015) Cannabinoids and epilepsy. Neurotherapeutics 12:747–768. https://doi.org/10.1007/s13311-015-0375-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Friedman D, Devinsky O (2015) Cannabinoids in the treatment of epilepsy. N Engl J Med 373:1048–1058. https://doi.org/10.1056/NEJMra1407304

    Article  PubMed  CAS  Google Scholar 

  142. Colasanti BK, Lindamood C III, Craig CR (1982) Effects of marihuana cannabinoids on seizure activity in cobalt-epileptic rats. Pharmacol Biochem Behav 16:573–578

    Article  PubMed  CAS  Google Scholar 

  143. Karler R, Turkanis SA (1980) Subacute cannabinoid treatment: anticonvulsant activity and withdrawal excitability in mice. Br J Pharmacol 68:479–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Romero J, Berrendero F, Manzanares J, Pérez A, Corchero J, Fuentes JA, Fernández-Ruiz JJ, Ramos JA (1998) Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to Δ9-tetrahydrocannabinol. Synapse 30:298–308. https://doi.org/10.1002/(sici)1098-2396(199811)30:3<298::aid-syn7>3.0.co;2-6

  145. Sim LJ, Hampson RE, Deadwyler SA, Childers SR (1996) Effects of chronic treatment with Δ9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPγS autoradiography in rat brain. J Neurosci 16:8057–8066

    Article  PubMed  CAS  Google Scholar 

  146. McKinney DL, Cassidy MP, Collier LM, Martin BR, Wiley JL, Selley DE, Sim-Selley LJ (2008) Dose-related differences in the regional pattern of cannabinoid receptor adaptation and in vivo tolerance development to Δ9-tetrahydrocannabinol. J Pharmacol Exp Ther 324:664–673. https://doi.org/10.1124/jpet.107.130328

    Article  PubMed  CAS  Google Scholar 

  147. Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, Scheffer IE, Thiele EA, Wright S, Cannabidiol in Dravet Syndrome Study G (2017) Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med 376:2011–2020. https://doi.org/10.1056/nejmoa1611618

    Article  PubMed  CAS  Google Scholar 

  148. Thiele EA, Marsh ED, French JA, Mazurkiewicz-Beldzinska M, Benbadis SR, Joshi C, Lyons PD, Taylor A, Roberts C, Sommerville K, Group GS (2018) Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 391:1085–1096. https://doi.org/10.1016/s0140-6736(18)30136-3

    Article  PubMed  CAS  Google Scholar 

  149. Petitet F, Jeantaud B, Reibaud M, Imperato A, Dubroeucq MC (1998) Complex pharmacology of natural cannabinoids: evidence for partial agonist activity of Δ9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors. Life Sci 63:PL1–PL6

    Article  PubMed  CAS  Google Scholar 

  150. Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–623. https://doi.org/10.1038/sj.bjp.0707133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Bisogno T, Hanuš L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852. https://doi.org/10.1038/sj.bjp.0704327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, Klosterkötter J, Hellmich M, Koethe D (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2:e94. https://doi.org/10.1038/tp.2012.15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Maione S, Piscitelli F, Gatta L, Vita D, De Petrocellis L, Palazzo E, de Novellis V, Di Marzo V (2011) Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. Br J Pharmacol 162:584–596. https://doi.org/10.1111/j.1476-5381.2010.01063.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Kano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugaya, Y., Kano, M. Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid signaling. Cell. Mol. Life Sci. 75, 2793–2811 (2018). https://doi.org/10.1007/s00018-018-2834-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2834-8

Keywords

Navigation