Skip to main content
Log in

Categorical laterality indices in fMRI: a parallel with classic similarity indices

  • Methods Paper
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

FMRI-based laterality index (LI) is widely used to assess relative left–right differences in brain function. Here we investigated objective ways to generate categorical LI. By defining left and right hemisphere contributions as discrete random variables, it was possible to depict the probability mass function of LI. Its distribution has a shape of a symmetrical truncated exponential function. We demonstrate that LI = ± 0.2 is an objective cut-off to categorize classification of hemispheric dominance. We then searched for parallels between LI and classic similarity or association indices. A parallel between LI and Sorensen–Dice index can be established under maximal voxel-wise overlap between left and right hemispheres. To redefine LI as a proper distance metric, we suggest instead to relate LI to Jaccard–Tanimoto similarity index. Accordingly, a new LI formula can be derived: LInew = LH–RH/max(LH,RH). Using this new formula, all LInew values follow a uniform-like distribution, and optimal categorization of hemispheric dominance can be achieved at cut-off LInew = ± 1/3. Overall, this study investigated some statistical properties of LI and revealed interesting parallels with classic similarity indices in taxonomy. The theoretical distribution of LI should be taken into account when quantifying any existing bias in empirical distributions of lateralization in healthy or clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Tanimoto distance is not always a synonym for Jaccard distance. For binary data, Tanimoto index can be defined as the ratio of the intersecting set to the union set (as in Equation [11], see also Todeschini et al. 2012). In that case, Equation [10] is a proper distance metric (Lipkus 1999). This distance is also called Soergel’s distance.

References

  • Abbott DF, Waites AB, Lillywhite L, Jackson GD (2010) fMRI assessment of language lateralization: an objective approach. Neuroimage 50:1446–1455

    Article  PubMed  Google Scholar 

  • Albatineh AN (2010) Means and variances for a family of similarity indices used in cluster analysis. J Stat Plan Inference 140:2828–2838

    Article  Google Scholar 

  • Albatineh AN, Khan HMR, Zogheib B, Kibria GBM (2017) Effects of some design factors on the distribution of similarity indices in cluster analysis. Commun Stat Simul Comput 46:4018–4034

    Google Scholar 

  • Barbosa AM (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol Evol 6:853–858

    Article  Google Scholar 

  • Bauer PR, Reitsma JB, Houweling BM, Ferrier CH, Ramsey NF (2014) Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review. J Neurol Neurosurg Psychiatry 85:581–588

    Article  PubMed  Google Scholar 

  • Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA, Jesmanowicz A, Hyde JS (1995) Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 52:593–601

    Article  CAS  PubMed  Google Scholar 

  • Binder JR et al (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984

    Article  CAS  PubMed  Google Scholar 

  • Bishop DV (2013) Cerebral asymmetry and language development: cause, correlate, or consequence? Science 340:1230531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw AR, Bishop DVM, Woodhead ZVJ (2017) Methodological considerations in assessment of language lateralisation with fMRI: a systematic review. PeerJ 5:e3557

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Van der Haegen L, Brysbaert M (2013) Complementary hemispheric specialization for language production and visuospatial attention. Proc Natl Acad Sci USA 110:E322–E330

    Article  PubMed  Google Scholar 

  • Cha S-H (2007) Comprehensive survey on distance/similarity measures between probability density functions. Int J Math Models Methods Appl Sci 1:300–307

    Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361–371

    Article  PubMed  Google Scholar 

  • Cheetham AH, Hazel JE (1969) Binary (presence-absence) similarity coefficients. J Paleontol 43:1130–1136

    Google Scholar 

  • Chlebus P, Mikl M, Brazdil M, Pazourkova M, Krupa P, Rektor I (2007) fMRI evaluation of hemispheric language dominance using various methods of laterality index calculation. Exp Brain Res 179:365–374

    Article  PubMed  Google Scholar 

  • Choi SS, Cha SH, Tappert C (2010) A survey of binary similarity and distance measures. J Syst Cybern Inf 8:43–48

    Google Scholar 

  • Corballis MC (2014) Left brain, right brain: facts and fantasies. PLoS Biol 12:e1001767

    Article  PubMed  PubMed Central  Google Scholar 

  • Desmond JE et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118:1411–1419

    Article  PubMed  Google Scholar 

  • Drane DL et al (2012) Cortical stimulation mapping and Wada results demonstrate a normal variant of right hemisphere language organization. Epilepsia 53:1790–1798

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagard J, Chapelain A, Bonnet P (2015) How should “ambidexterity” be estimated? Laterality 20:543–570

    Article  PubMed  Google Scholar 

  • Fligner MA, Verducci JS, Blower PE (2002) A modification of the Jaccard-Tanimoto similarity index for diverse selection of chemical compounds using binary strings. Technometrics 44:110–119

    Article  Google Scholar 

  • Geschwind N, Galaburda AM (1985) Cerebral lateralization: biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Arch Neurol 42:428–459

    Article  CAS  PubMed  Google Scholar 

  • Gower JC, Legendre P (1986) Metric and Euclidean properties of dissimilarity coefficients. J Classif 3:5–48

    Article  Google Scholar 

  • Holliday JD, Hu CY, Willett P (2002) Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings. Comb Chem High Throughput Screen 5:155–166

    Article  CAS  PubMed  Google Scholar 

  • Hubalek Z (1982) Coefficients of association and similarity, based on binary (presence-absence) data: an evaluation. Biol Rev 57:669–689

    Article  Google Scholar 

  • Hwang C-M, Yang M-S, Hung W-L (2018) New similarity measures of intuitionistic fuzzy sets based on the Jaccard index with its application to clustering. Int J Intell Syst 33:1672–1688

    Article  Google Scholar 

  • Ivchenko GI, Polpchuk OV, Khonov SA (1995) Concerning a class of similarity tests. Math Notes 58:1049–1056

    Article  Google Scholar 

  • Janecek JK, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan ME, Rozman M, Binder JR (2013) Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia 54:314–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen A et al (2006) The assessment of hemispheric lateralization in functional MRI-robustness and reproducibility. Neuroimage 33:204–217

    Article  CAS  PubMed  Google Scholar 

  • Johnston JW (1976) Similarity indices I: what do they measure? Battelle. Pacific Northwest Laboratories, Virginia

    Book  Google Scholar 

  • Knecht S et al (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518

    Article  PubMed  Google Scholar 

  • Kong XZ et al (2018) Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci USA 115:E5154–E5163

    Article  CAS  PubMed  Google Scholar 

  • Kosub S (2019) A note on the triangle inequality for the Jaccard distance. Pattern Recog Lett 120:36–38

    Article  Google Scholar 

  • Lipkus AH (1999) A proof of the triangle inequality for the Tanimoto distance. J Math Chem 26:263–265

    Article  CAS  Google Scholar 

  • Mazoyer B et al (2014) Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS One 9:e101165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick WP, Lyons NI, Hutcheson K (1992) Distributional properties of Jaccard’s index of similarity. Commun Stat 21:51–68

    Article  Google Scholar 

  • McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 22:276–282 (Zagreb)

    Article  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Paradowski M (2015) On the order equivalence relation of binary association measures. Int J Appl Math Comp Sci 25:645–657

    Article  Google Scholar 

  • Pinel P, Dehaene S (2010) Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere. J Cogn Neurosci 22:48–66

    Article  PubMed  Google Scholar 

  • Real R (1999) Tables of significant values of Jaccard’s index of similarity. Misc Zool 22:29–40

    Google Scholar 

  • Real R, Vargas JM (1996) The probabilistic basis of Jaccard’s index of similarity. Syst Biol 45:380–385

    Article  Google Scholar 

  • Seghier ML (2008) Laterality index in functional MRI: methodological issues. Magn Res Imaging 26:594–601

    Article  Google Scholar 

  • Seghier ML, Kherif F, Josse G, Price CJ (2011) Regional and hemispheric determinants of language laterality: implications for preoperative fMRI. Hum Brain Mapp 32:1602–1614

    Article  PubMed  Google Scholar 

  • Snijders TAB, Dormaar M, van Schuur WH, Dijkman-Caes C, Driessen G (1990) Distribution of some similarity coefficients for dyadic binary data in the case of associated attributes. J Classif 7:5–31

    Article  Google Scholar 

  • Stroobant N, Buijs D, Vingerhoets G (2009) Variation in brain lateralization during various language tasks: a functional transcranial Doppler study. Behav Brain Res 199:190–196

    Article  PubMed  Google Scholar 

  • Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Todeschini R, Consonni V, Xiang H, Holliday J, Buscema M, Willett P (2012) Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J Chem Inf Model 52:2884–2901

    Article  CAS  PubMed  Google Scholar 

  • Warrens MJ (2008) Similarity coefficients for binary data: properties of coefficients, coefficient matrices, multi-way metrics and multivariate coefficients. Leiden University, Leiden

    Google Scholar 

  • Whitehouse AJ, Bishop DV (2009) Hemispheric division of function is the result of independent probabilistic biases. Neuropsychologia 47:1938–1943

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302

    Article  PubMed  Google Scholar 

  • Zijdenbos AP, Dawant BM (1994) Brain segmentation and white matter lesion detection in MR images. Crit Rev Biomed Eng 22:401–465

    CAS  PubMed  Google Scholar 

  • Zou KH et al (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11:178–189

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by ECAE’s Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed L. Seghier.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

For this study with synthetic/simulated data only, formal consent is not required.

Research involving human participants

This article does not contain any data from human participants or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seghier, M.L. Categorical laterality indices in fMRI: a parallel with classic similarity indices. Brain Struct Funct 224, 1377–1383 (2019). https://doi.org/10.1007/s00429-019-01833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01833-9

Keywords

Navigation