Skip to main content
Log in

Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80–90%) of test–retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Given this ratio and the respective number of nonface images and face images, nonface images repeat more often during a run than face images (i.e., ~ 3 times per face image versus ~ 10 times per object image). Equating the number of repetitions here would require using about 600 object images. Alternatively, one could reduce the number of face images, but at the expense of generalizability. Importantly, human electrophysiological studies using this stimulation mode have shown the same face-selective response with face and nonface images being equated for repetition (e.g., Rossion et al. 2015; Jacques et al., 2016) or not (Retter and Rossion 2016). Most importantly, the latter study directly demonstrated that the face-selective response is immune to large variations in ratios between the number of presented face and nonface images (Retter and Rossion 2016).

  2. All the data analysis scripts in the current study are available upon request.

References

  • Aguirre GK, D’Esposito M (1999) Experimental design for brain fMRI. Functional MRI. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer, Berlin, pp 369–380

    Google Scholar 

  • Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107

    Article  PubMed  CAS  Google Scholar 

  • Andrews TJ, Watson DM, Rice GE, Hartley T (2015) Low-level properties of natural images predict topographic patterns of neural response in the ventral visual pathway. J Vis 15(7):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Avidan G, Tanzer M, Hadj-Bouziane F, Liu N, Ungerleider LG, Behrmann M (2014) Selective dissociation between core and extended regions of the face processing network in congenital prosopagnosia. Cereb Cortex 24:1565–1578

    Article  PubMed  Google Scholar 

  • Axelrod V, Yovel G (2013) The challenge of localizing the anterior temporal face area: a possible solution. NeuroImage 81:371–380

    Article  PubMed  Google Scholar 

  • Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173

    Article  PubMed  CAS  Google Scholar 

  • Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191:133–155

    Article  PubMed  Google Scholar 

  • Benuzzi F, Pugnaghi M, Meletti S, Lui F, Serafini M, Baraldi P, Nichelli P (2007) Processing the socially relevant parts of faces. Brain Res Bull 74:344–356

    Article  PubMed  Google Scholar 

  • Berman MG, Park J, Gonzalez R, Polk TA, Gehrke A, Knaffla S, Jonides J (2010) Evaluating functional localizers: the case of the FFA. NeuroImage 50:56–71

    Article  PubMed  Google Scholar 

  • Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth JA, Leipzig

    Google Scholar 

  • Busigny T, van Belle G, Jemel B, Hosein A, Joubert S, Rossion B (2014) Face-specific impairment in holistic perception following focal lesion of the right anterior temporal lobe. Neuropsychologia 56:312–333

    Article  PubMed  Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Uludağ K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23:S220–S233

    Article  PubMed  Google Scholar 

  • Calder AJ, Young AW (2005) Understanding the recognition of facial identity and facial expression. Nat Rev Neurosci 6:641–651

    Article  PubMed  CAS  Google Scholar 

  • Chan AWY, Downing PE (2011) Faces and eyes in human lateral prefrontal cortex. Front Hum Neurosci 5(51):1–10

    Google Scholar 

  • Collins JA, Olson IR (2014) Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79

    Article  PubMed  Google Scholar 

  • Collins JA, Koski JE, Olson IR (2016) More than meets the eye: the merging of perceptual and conceptual knowledge in the anterior temporal face area. Front Hum Neurosci 10:189. https://doi.org/10.3389/fnhum.2016.00189

    Article  PubMed  PubMed Central  Google Scholar 

  • Crouzet SM, Thorpe SJ (2011) Low-level cues and ultra-fast face detection. Front Psychol 2:342. https://doi.org/10.3389/fpsyg.2011.00342

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Esposito M (2010) Why methods matter in the study of the biological basis of the mind: A behavioral neurologist’s perspective. In: Reuter-Lorenz PA, Baynes K, Mangun GR, Phelps EA (eds) The cognitive neuroscience of mind: a tribute to Michael S. Gazzaniga. MIT Press, Cambridge, pp 203–221

    Chapter  Google Scholar 

  • Dale AM (1999) Optimal experimental design for event-related fMRI. Hum Brain Mapp 8:109–114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Heering A, Rossion B (2015) Rapid categorization of natural face images in the infant right hemisphere. eLife 4:1–14

    Article  Google Scholar 

  • Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53:1–15

    Article  PubMed  Google Scholar 

  • Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Tyler LK et al (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. NeuroImage 11:589–600

    Article  PubMed  CAS  Google Scholar 

  • Dormal G, Lepore F, Harissi-Dagher M, Albouy G, Bertone A, Rossion B, Collignon O (2015) Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration. J Neurophysiol 113:1727–1742

    Article  PubMed  Google Scholar 

  • Duchaine B, Yovel G (2015) A revised neural framework for face processing. Annu Rev Vis Sci 1:393–416

    Article  PubMed  Google Scholar 

  • Duncan KJ, Devlin JT (2011) Improving the reliability of functional localizers. NeuroImage 57(3):1022–1030

    Article  Google Scholar 

  • Duncan KJ, Pattamadilok C, Knierim I, Devlin JT (2009) Consistency and variability in functional localisers. NeuroImage 46:1018–1026

    Article  PubMed  Google Scholar 

  • Embleton KV, Haroon HA, Morris DM, Ralph MA, Parker GJ (2010) Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes. Hum Brain Mapp 31:1570–1587

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  PubMed  CAS  Google Scholar 

  • Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fox C, Moon S, Iaria G, Barton J (2009) The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study. NeuroImage 44:569–580

    Article  PubMed  Google Scholar 

  • Fox CJ, Hanif HM, Iaria G, Duchaine BC, Barton JJ (2011) Perceptual and anatomic patterns of selective deficits in facial identity and expression processing. Neuropsychologia 49:3188–3200

    Article  PubMed  Google Scholar 

  • Freud E, Ganel T, Shelef I, Hammer MD, Avidan G, Behrmann M (2017) Three-dimensional representations of objects in dorsal cortex are dissociable from those in ventral cortex. Cereb Cortex 27:422–434

    Article  PubMed  Google Scholar 

  • Friston KJ, Price CJ, Fletcher P, Moore C, Frackowiak RS, Dolan RJ (1996) The trouble with cognitive subtraction. NeuroImage 4:97–104

    Article  PubMed  CAS  Google Scholar 

  • Frost MA, Goebel R (2012) Measuring structural–functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. NeuroImage 59:1369–1381

    Article  PubMed  Google Scholar 

  • Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12:495–504

    Article  PubMed  CAS  Google Scholar 

  • Gentile F, Rossion B (2014) Temporal frequency tuning of cortical face-sensitive areas for individual face perception. NeuroImage 90:256–265

    Article  PubMed  Google Scholar 

  • Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, … Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gobbini MI, Haxby JV (2006) Neural response to the visual familiarity of faces. Brain Res Bull 71:76–82

    Article  PubMed  Google Scholar 

  • Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, Gabrieli JDE, Grill-Spector K (2007) Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat Neurosci 10:512–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez J, Barnett MA, Natu V, Mezer A, Palomero-Gallagher N, Weiner KS, Grill-Spector K et al (2017) Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355:68–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15:536–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grill-Spector K, Weiner KS, Kay K, Gomez J (2017) The functional neuroanatomy of human face perception. Annu Rev Vis Sci 3:167–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage 21:1639–1651

    Article  PubMed  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Huth AG, Nishimoto S, Vu AT, Gallant JL (2012) A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76:1210–1224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishai A, Schmidt CF, Boesiger P (2005) Face perception is mediated by a distributed cortical network. Brain Res Bull 67:87–93

    Article  PubMed  Google Scholar 

  • Jokisch D, Jensen O (2007) Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci 27:3244–3251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jonas J, Rossion B, Brissart H, Frismand S, Jacques C, Hossu G, Maillard L et al (2015) Beyond the core face-processing network: intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex 72:140–155

    Article  PubMed  Google Scholar 

  • Jonas J, Jacques C, Liu-Shuang J, Brissart H, Colnat-Coulbois S, Maillard L, Rossion B (2016) A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc Natl Acad Sci USA 113:E4088–E4097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanwisher N (2017) The quest for the FFA and where it led. J Neurosci 37:1056–1061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 7:4302–4311

    Article  Google Scholar 

  • Kim J-J, Crespo-Facorro B, Andreasen NC, O’Leary DS, Zhang B, Harris G, Magnotta VA (2000) An MRI-based parcellation method for the temporal lobe. NeuroImage 11:271–288

    Article  PubMed  Google Scholar 

  • Koenig-Robert R, VanRullen R, Tsuchiya N (2015) Semantic wavelet-induced frequency-tagging (SWIFT) periodically activates category selective areas while steadily activating early visual areas. PLoS One 10:e0144858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs G (2005) Electrophysiological correlates of visual adaptation to faces and body parts in humans. Cereb Cortex 16:742–753

    Article  PubMed  Google Scholar 

  • Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc Natl Acad Sci USA 104:20600–20605

    Article  PubMed  PubMed Central  Google Scholar 

  • Krüger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46:631–637

    Article  PubMed  Google Scholar 

  • Lafer-sousa R, Conway BR, Kanwisher NG (2016) Color-biased regions of the ventral visual pathway lie between face- and place-selective regions in humans, as in macaques. J Neurosci 36:1682–1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lochy A, van Belle G, Rossion B (2015) A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation. Neuropsychologia 66:18–31

    Article  PubMed  Google Scholar 

  • Loffler G, Yourganov G, Wilkinson F, Wilson HR (2005) fMRI evidence for the neural representation of faces. Nat Neurosci 8:1386–1391

    Article  PubMed  CAS  Google Scholar 

  • Maus B, van Breukelen GJP, Goebel R, Berger MPF (2010) Optimization of blocked designs in fMRI studies. Psychometrika 75:373–390

    Article  Google Scholar 

  • McCarthy G, Spicer M, Adrignolo A, Luby M, Gore JC, Allison T (1994) Brain activation associated with visual motion studied by functional magnetic resonance imaging in humans. Hum Brain Mapp 2:234–243

    Article  Google Scholar 

  • McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9:605–610

    Article  PubMed  CAS  Google Scholar 

  • McKeefry D, Zeki S (1997) The position and topography of the human color centre as revealed by functional magnetic resonance imaging. Brain 120:2229–2242

    Article  PubMed  Google Scholar 

  • Murphy K, Bodurka J, Bandettini PA (2007) How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. NeuroImage 34:565–574

    Article  PubMed  Google Scholar 

  • Nasr S, Tootell RB (2012) Role of fusiform and anterior temporal cortical areas in facial recognition. NeuroImage 63:1743–1753

    Article  PubMed  Google Scholar 

  • Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M …Yeo BTT (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norcia AM, Appelbaum LG, Ales JM, Cottereau B, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15(6):4:1–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Potter MC (2012) Recognition and memory for briefly presented scenes. Front Psychol 3:1–9

    Google Scholar 

  • Puce A (1999) Electrophysiological studies of human face perception III: effects of top-down processing on face-specific potentials. Cereb Cortex 9:445–458

    Article  PubMed  CAS  Google Scholar 

  • Puce A, Allison T, Gore JC, McCarthy G (1995) Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol 74:1192–1199

    Article  PubMed  CAS  Google Scholar 

  • Rajimehr R, Young JC, Tootell RB (2009) An anterior temporal face patch in human cortex predicted by macaque maps. Proc Natl Acad Sci USA 106:1995–2000

    Article  PubMed  PubMed Central  Google Scholar 

  • Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  • Retter TL, Rossion B (2016) Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia 91:9–28

    Article  PubMed  Google Scholar 

  • Rice GE, Watson DM, Hartley T, Andrews TJ (2014) Low-level image properties of visual objects predict patterns of neural response across category-selective regions of the ventral visual pathway. J Neurosci 34(26):8837–8844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossion B, Boremanse A (2011) Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. J Vis 11(16):1–21

    Google Scholar 

  • Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395

    Article  PubMed  Google Scholar 

  • Rossion B, Hanseeuw B, Dricot L (2012) Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain Cogn 79:138–157

    Article  PubMed  Google Scholar 

  • Rossion B, Torfs K, Jacques C, Liu-Shuang J (2015) Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J Vis 15(18):1–18

    PubMed  Google Scholar 

  • Rossion B, Jacques C, Jonas J (2018) Mapping face categorization in the human ventral occipito-temporal cortex with direct neural intracranial recordings. Ann N Y Acad Sci

  • Rousselet GA, Husk JS, Bennett PJ, Sekuler AB (2008) Time course and robustness of ERP object and face differences. J Vis 8(3):1–18

    Article  PubMed  Google Scholar 

  • Sadr J, Sinha P (2004) Object recognition and random image structure evolution. Cogn Sci 28:259–287

    Article  Google Scholar 

  • Scherf KS, Behrmann M, Humphreys K, Luna B (2007) Visual category-selectivity for faces places and objects emerges along different developmental trajectories. Dev Sci 10:F15–F30

    Article  PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893

    Article  PubMed  CAS  Google Scholar 

  • Sergent J, Ohta S, MacDonald B (1992) Functional neuroanatomy of face and object processing. Brain 115:15–36

    Article  PubMed  Google Scholar 

  • Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Matthews PM et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Beckmann C, Miller K, Woolrich M (2007) Meaningful design and contrast estimability in FMRI. NeuroImage 34:127–136

    Article  PubMed  Google Scholar 

  • Susilo T, Duchaine B (2013) Advances in developmental prosopagnosia research. Curr Opin Neurobiol 23:423–429

    Article  PubMed  CAS  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  PubMed  CAS  Google Scholar 

  • Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Rosen BR et al (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141

    Article  PubMed  CAS  Google Scholar 

  • Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci USA 105:19514–19519

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuladhar AM, Huurne N, ter Schoffelen JM, Maris E, Oostenveld R, Jensen O (2007) Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp 28:785–792

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRullen R (2006) On second glance: still no high-level pop-out effect for faces. Vis Res 46:3017–3027

    Article  PubMed  Google Scholar 

  • Visser M, Embleton KV, Jefferies E, Parker GJ, Ralph MA (2010) The inferior, anterior temporal lobes and semantic memory clarified: novel evidence from distortion-corrected fMRI. Neuropsychologia 48:1689–1696

    Article  PubMed  CAS  Google Scholar 

  • Von Der Heide RJ, Skipper LM, Olson IR (2013) Anterior temporal face patches: a meta-analysis and empirical study. Front Hum Neurosci 7:17. https://doi.org/10.3389/fnhum.2013.00017

    Article  Google Scholar 

  • Wandell BA (2011) The neurobiological basis of seeing words. Ann N Y Acad Sci 1224:63–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Res 51:718–737

    Article  PubMed  Google Scholar 

  • Winawer J, Witthoft N (2015) Human V4 and ventral occipital retinotopic maps. Vis Neurosci 32:(E020)

  • Wang Y-F, Liu F, Long Z-L, Duan X-J, Cui Q, Yan JH, Chen H-F (2014) Steady-state BOLD response modulates low frequency neural oscillations. Sci Rep 4(7376):1–7

    Google Scholar 

  • Wang Y-F, Dai G-S, Liu F, Long Z-L, Yan JH, Chen H-F (2015) Steady-state BOLD response to higher-order cognition modulates low-frequency neural oscillations. J Cogn Neurosci 27:2406–2415

    Article  PubMed  Google Scholar 

  • Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage 52:1559–1573

    Article  PubMed  Google Scholar 

  • Weiner KS, Jonas J, Gomez J, Maillard L, Brissart H, Hossu G, Rossion B et al (2016) The face-processing network is resilient to focal resection of human visual cortex. J Neurosci 36:8425–8440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welvaert M, Rosseel Y (2013) On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS One 8:e77089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worsley KJ, Marrett S, Neelin P, Evans AC (1996) Searching scale space for activation in PET images. Hum Brain Mapp 4:74–90

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Susilo T, Duchaine B (2016) The anterior temporal face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb Cortex 26:1096–1107

    Article  PubMed  Google Scholar 

  • Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46

    Article  PubMed  Google Scholar 

  • Zhen Z, Yang Z, Huang L, Kong X, Wang X, Dang X, Huang Y, Song Y, Liu J (2015) Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. NeuroImage 113:13–25

    Article  PubMed  Google Scholar 

  • Zilles K, Amunts K (2013) Individual variability is not noise. Trends Cogn Sci 17:153

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Valérie Goffaux, Corentin Jacques, Jacques Jonas, Kirsten Petras, and Talia Retter and two anonymous reviewers for their helpful comments on an earlier version of this paper. We also thank Talia Retter for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Rossion.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5550 KB)

Supplementary material 2 (MOV 19033 KB)

Supplementary material 3 (MOV 16358 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Gentile, F. & Rossion, B. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping. Brain Struct Funct 223, 2433–2454 (2018). https://doi.org/10.1007/s00429-018-1630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1630-4

Keywords

Navigation