Abosch A, Yacoub E, Ugurbil K, Harel N (2010) An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 T. Neurosurgery 67:1745–1756. doi:10.1227/NEU.0b013e3181f74105
PubMed
PubMed Central
Article
Google Scholar
Acosta-Cabronero J, Betts MJ, Cardenas-Blanco A et al (2016) In vivo MRI mapping of brain iron deposition across the adult lifespan. 36:364–374. doi:10.1523/JNEUROSCI.1907-15.2016
Alkemade A, Keuken MC, Forstmann BU (2013) A perspective on terra incognita: uncovering the neuroanatomy of the human subcortex. Front Neuroanat. doi:10.3389/fnana.2013.00040
PubMed
PubMed Central
Google Scholar
Andersson J, Jenkinson M, Smith S (2007) Non-linear registration, aka spatial normalisation. Technical Report TR07JA2, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, Oxford University, Oxford, UK. Available at http://www.fmrib.ox.ac.uk/analysis/techrep
Andrade-Souza YM, Schwalb JM, Hamani C et al (2005) Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery 56:360–368. doi:10.1227/01.NEU.0000156547.24603.EE
PubMed
Article
Google Scholar
Aquino D, Bizzi A, Grisoli M et al (2009) Age-related Iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252:165–172. doi:10.1148/radiol.2522081399
PubMed
Article
Google Scholar
Barron SA, Jacobs L, Kinkel WR (1976) Changes in size of normal lateral ventricles during aging determined by computerized tomography. Neurology 26:1011–1011
CAS
PubMed
Article
Google Scholar
Bastin ME, Clayden JD, Pattie A et al (2009) Diffusion tensor and magnetization transfer MRI measurements of periventricular white matter hyperintensities in old age. Neurobiol Aging 30:125–136. doi:10.1016/j.neurobiolaging.2007.05.013
PubMed
Article
Google Scholar
Bazin P-L, Weiss M, Dinse J et al (2013) A computational framework for ultra-high resolution cortical segmentation at 7 T. NeuroImage 1–9. doi:10.1016/j.neuroimage.2013.03.077
Beisteiner R, Robinson S, Wurnig M et al (2011) Clinical fMRI: evidence for a 7 T benefit over 3 T. NeuroImage 57:1015–1021. doi:10.1016/j.neuroimage.2011.05.010
CAS
PubMed
PubMed Central
Article
Google Scholar
Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet AM, Marsault C, Agid Y, Philippon J, Cornu P (2000) Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92(4):615–625
Benedetti B, Charil A, Rovaris M et al (2006) Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRI. Neurology 66:535–539
CAS
PubMed
Article
Google Scholar
Betts MJ, Acosta-Cabronero J, Cardenas-Blanco A et al (2016) High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7 T. NeuroImage 138:43–63. doi:10.1016/j.neuroimage.2016.05.024
PubMed
Article
Google Scholar
Bilgic B, Pfefferbaum A, Rohlfing T et al (2012) MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. NeuroImage 59:2625–2635. doi:10.1016/j.neuroimage.2011.08.077
CAS
PubMed
Article
Google Scholar
Callaghan MF, Freund P, Draganski B et al (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging NBA 35:1862–1872. doi:10.1016/j.neurobiolaging.2014.02.008
Article
Google Scholar
Chavhan GB, Babyn PS, Thomas B et al (2009) Principles, techniques, and applications of \(T_{2}^{*}\)-based MR imaging and its special applications1. RadioGraphics 29:1433–1449. doi:10.1148/rg.295095034
PubMed
PubMed Central
Article
Google Scholar
Cherubini A, Péran P, Caltagirone C et al (2009) Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. NeuroImage 48:29–36. doi:10.1016/j.neuroimage.2009.06.035
PubMed
Article
Google Scholar
Cho ZH, Kim YB, Han JY et al (2008) New brain atlas—mapping the human brain in vivo with 7.0 T MRI and comparison with postmortem histology: Will these images change modern medicine? Int J Imaging Syst Technol 18:2–8
Article
Google Scholar
Cho ZH, Min HK, Oh SH et al (2010) Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg 113:1–9
Article
Google Scholar
Cho ZH, Kim JM, Park SY et al (2011) Direct visualization of Parkinson’s disease by in vivo human brain imaging using 7.0 T magnetic resonance imaging. Mov Disord 26:713–718. doi:10.1002/mds.23465
PubMed
Article
Google Scholar
Cohen-Adad J, Polimeni JR, Helmer KG et al (2012) \(T_{2}^{*}\) mapping and B0 orientation-dependence at 7 T reveal cyto- and myeloarchitecture organization of the human cortex. NeuroImage 60:1006–1014. doi:10.1016/j.neuroimage.2012.01.053
CAS
PubMed
Article
Google Scholar
Courchesne E, Chisum HJ, Townsend J et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682
CAS
PubMed
Article
Google Scholar
Daugherty A, Raz N (2013) Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis. NeuroImage 70:113–121. doi:10.1016/j.neuroimage.2012.12.040
PubMed
Article
Google Scholar
Deistung A, Schäfer A, Schweser F et al (2013) Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. NeuroImage 65:299–314. doi:10.1016/j.neuroimage.2012.09.055
PubMed
Article
Google Scholar
Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302
Article
Google Scholar
Diedrichsen J, Balsters JH, Flavell J et al (2009) A probabilistic MR atlas of the human cerebellum. NeuroImage 46:39–46. doi:10.1016/j.neuroimage.2009.01.045
PubMed
Article
Google Scholar
Dinse J, Härtwich N, Waehnert MD, et al (2015) A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI. NeuroImage 114:71–87. doi:10.1016/j.neuroimage.2015.04.023
CAS
PubMed
Article
Google Scholar
Deep-Brain Stimulation for Parkinson's Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345(13):956–963
Draganski B, Ashburner J, Hutton C et al (2011) Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). NeuroImage 55:1423–1434. doi:10.1016/j.neuroimage.2011.01.052
CAS
PubMed
PubMed Central
Article
Google Scholar
Dunnen Den WF, Staal MJ (2005) Anatomical alterations of the subthalamic nucleus in relation to age: a postmortem study. Mov Disord 20:893–898. doi:10.1002/mds.20417
Article
Google Scholar
Eppinger B, Schuck NW, Nystrom LE, Cohen JD (2013) Reduced striatal responses to reward prediction errors in older compared with younger adults. J Neurosci 33:9905–9912. doi:10.1523/JNEUROSCI.2942-12.2013
CAS
PubMed
PubMed Central
Article
Google Scholar
Federau C, Gallichan D (2016) Motion-correction enabled ultra-high resolution In-vivo 7 T-MRI of the brain. PloS One 11:e0154974–e0154912. doi:10.1371/journal.pone.0154974
PubMed
PubMed Central
Article
CAS
Google Scholar
Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21:187–221
PubMed
Article
Google Scholar
Follett KA, Torres-Russotto D (2011) Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson’s disease: Which target? Parkinsonism Realt Disord 18:S165–S167. doi:10.1016/S1353-8020(11)70051-7
Article
Google Scholar
Forstmann BU, Keuken MC, Schäfer A et al (2014) Multi-modal ultra-high resolution structural 7-Tesla MRI data repository. Scient Data 1:140050–140058. doi:10.1038/sdata.2014.50
Article
Google Scholar
Forstmann BU, de Hollander G, van Maanen L et al (in press). Towards a mechanistic understanding of the human subcortex. Nat Rev Neurosci
Fukunaga M, Li TQ, van Gelderen P et al (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Nat Acad Sci 107:3834–3839. doi:10.1073/pnas.0911177107
CAS
PubMed
PubMed Central
Article
Google Scholar
Fytagoridis A, Blomstedt P (2010) Complications and side effects of deep brain stimulation in the posterior subthalamic area. Stereotact Funct Neurosurg 88:88–93. doi:10.1159/000271824
CAS
PubMed
Article
Google Scholar
Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. Am J Neuroradiol 23(8):1327–1333
Gong N-J, Wong C-S, Hui ES et al (2015) Hemisphere, gender and age-related effects on iron deposition in deep gray matter revealed by quantitative susceptibility mapping. NMR Biomed 28:1267–1274. doi:10.1002/nbm.3366
PubMed
Article
Google Scholar
Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14:21–36. doi:10.1006/nimg.2001.0786
CAS
PubMed
Article
Google Scholar
Goodro M, Sameti M, Patenaude B, Fein G (2012) Age effect on subcortical structures in healthy adults. Psychiatr Res Neuroimaging 203:38–45. doi:10.1016/j.pscychresns.2011.09.014
Article
Google Scholar
Greenberg DL, Messer DF, Payne ME et al (2008) Aging, gender, and the elderly adult brain: an examination of analytical strategies. Neurobiol Aging 29:290–302. doi:10.1016/j.neurobiolaging.2006.09.016
PubMed
Article
Google Scholar
Haacke EM, Liu S, Buch S et al (2015) Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33:1–25. doi:10.1016/j.mri.2014.09.004
PubMed
Article
Google Scholar
Haase A, Frahm J, Matthaei D et al (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266
CAS
Google Scholar
Haber SN, Gdowski MJ (2004) The basal ganglia. In: Paxinos G, Mai JK (ed) The human nervous system, 2nd edn. Academic Press, London, p 676–738
Haber SN, Knutson B (2009) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26. doi:10.1038/npp.2009.129
PubMed Central
Article
Google Scholar
Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51
CAS
PubMed
Article
Google Scholar
Helms G, Draganski B, Frackowiak R et al (2009) Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. NeuroImage 47:194–198. doi:10.1016/j.neuroimage.2009.03.053
PubMed
PubMed Central
Article
Google Scholar
Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156
CAS
PubMed
Article
Google Scholar
Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841. doi:10.1006/nimg.2002.1132
PubMed
Article
Google Scholar
Jenkinson M, Beckmann CF, Behrens TEJ et al (2012) FSL. NeuroImage 62:782–790. doi:10.1016/j.neuroimage.2011.09.015
PubMed
Article
Google Scholar
Jernigan TL, Archibald SL, Fennema-Notestine C (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22:581–594. doi:10.1016/s0197-4580(01)00217-2
CAS
PubMed
Article
Google Scholar
Keren NI, Taheri S, Vazey EM et al (2015) Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. NeuroImage 1–11. doi:10.1016/j.neuroimage.2015.03.020
Keuken MC, Bazin PL, Schafer A et al (2013) Ultra-high 7 T MRI of structural age-related changes of the subthalamic. Nucleus 33:4896–4900. doi:10.1523/JNEUROSCI.3241-12.2013
CAS
Google Scholar
Keuken MC, Bazin PL, Crown L et al (2014) Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI. NeuroImage 94:40–46. doi:10.1016/j.neuroimage.2014.03.032
CAS
PubMed
Article
Google Scholar
Khabipova D, Wiaux Y, Gruetter R, Marques JP (2015) A modulated closed form solution for quantitative susceptibility mapping — A thorough evaluation and comparison to iterative methods based on edge prior knowledge. NeuroImage 107:163–174. doi:10.1016/j.neuroimage.2014.11.038
PubMed
Article
Google Scholar
Kim J, Lenglet C, Duchin Y et al (2014) Semiautomatic segmentation of brain subcortical structures from high-field MRI. IEEE J Biomed Health Inform 18:1678–1695. doi:10.1109/JBHI.2013.2292858
PubMed
PubMed Central
Article
Google Scholar
Kitajima M, Korogi Y, Kakeda S et al (2008) Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology 50:675–681. doi:10.1007/s00234-008-0388-4
PubMed
Article
Google Scholar
Klein A, Andersson J, Ardekani BA et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46:786–802. doi:10.1016/j.neuroimage.2008.12.037
PubMed
PubMed Central
Article
Google Scholar
Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med 20:285–291. doi:10.1002/mrm.1910200210
CAS
PubMed
Article
Google Scholar
Koopmans PJ, Barth M, Orzada S, Norris DG (2011) Multi-echo fMRI of the cortical laminae in humans at 7 T. NeuroImage 1–41. doi:10.1016/j.neuroimage.2011.02.042
Lambert C, Chowdhury R, Fitzgerald T et al (2013) Characterizing aging in the human brainstem using quantitative multimodal MRI analysis. Front Hum Neurosci. doi:10.3389/fnhum.2013.00462
PubMed
PubMed Central
Google Scholar
Langkammer C, Schweser F, Krebs N et al (2012) Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage 62:1593–1599. doi:10.1016/j.neuroimage.2012.05.049
PubMed
PubMed Central
Article
Google Scholar
Lebel C, Gee M, Camicioli R et al (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage 60:340–352. doi:10.1016/j.neuroimage.2011.11.094
CAS
PubMed
Article
Google Scholar
Lee J, Shmueli K, Fukunaga M et al (2010) Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. Proc Natl Acad Sci USA 107:5130–5135. doi:10.1073/pnas.0910222107
CAS
PubMed
PubMed Central
Article
Google Scholar
Lemaitre H, Goldman AL, Sambataro F et al (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? NBA 33:617.e1–617.e9. doi:10.1016/j.neurobiolaging.2010.07.013
Google Scholar
Lenglet C, Abosch A, Yacoub E et al (2012) Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7 T MRI. PloS One 7:e29153. doi:10.1371/journal.pone.0029153.t001
CAS
PubMed
PubMed Central
Article
Google Scholar
Li W, Wu B, Batrachenko A et al (2013) Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Hum Brain Mapp 35:2698–2713. doi:10.1002/hbm.22360
PubMed
PubMed Central
Article
Google Scholar
Liem F, Mérillat S, Bezzola L et al (2015) Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly. NeuroImage 108:95–109. doi:10.1016/j.neuroimage.2014.12.035
PubMed
Article
Google Scholar
Lorio S, Lutti A, Kherif F et al (2014) Disentangling in vivo the effects of iron content and atrophy on the ageing human brain. NeuroImage 103:280–289. doi:10.1016/j.neuroimage.2014.09.044
CAS
PubMed
PubMed Central
Article
Google Scholar
Lorio S, Fresard S, Adaszewski S et al (2016a) New tissue priors for improved automated classification of subcortical brain structures on MRI. NeuroImage 130:157–166. doi:10.1016/j.neuroimage.2016.01.062
CAS
PubMed
PubMed Central
Article
Google Scholar
Lorio S, Kherif F, Ruef A et al (2016b) Neurobiological origin of spurious brain morphological changes: a quantitative MRI study. Hum Brain Mapp n/a–n/a. doi:10.1002/hbm.23137
Lutti A, Dick F, Sereno MI, Weiskopf N (2014) Using high-resolution quantitative mapping of R1 as an index of cortical myelination. NeuroImage 1–13. doi:10.1016/j.neuroimage.2013.06.005
Maniega SM, Hernández MCV, Clayden JD et al (2015) White matter hyperintensities and normal-appearing white matter integrity in the aging brain. NBA 36:909–918. doi:10.1016/j.neurobiolaging.2014.07.048
Google Scholar
Marques JP, Gruetter R (2013) New developments and applications of the MP2RAGE sequence - focusing the contrast and high spatial resolution R1 mapping. PloS One 8:e69294–e69211. doi:10.1371/journal.pone.0069294
CAS
PubMed
PubMed Central
Article
Google Scholar
Marques JP, Kober T, Krueger G et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T
1-mapping at high field. NeuroImage 49:1271–1281. doi:10.1016/j.neuroimage.2009.10.002
PubMed
Article
Google Scholar
Mavridis I, Boviatsis E, Anagnostopoulou S (2014) Stereotactic anatomy of the human subthalamic nucleus: providing coordinates for accurate electrode placement. J Neurol Surg A Cent Eur Neurosurg 75:289–298. doi:10.1055/s-0034-1368093
PubMed
Article
Google Scholar
McRobbie DW, Moore EA, Graves MJ, Prince MR (2006) MRI from picture to proton, 1st edn. Cambridge University Press, Cambridge
Book
Google Scholar
Mell T (2009) Altered function of ventral striatum during reward-based decision making in old age. Front Hum Neurosci. doi:10.3389/neuro.09.034.2009
PubMed
PubMed Central
Google Scholar
Milford D, Rosbach N, Bendszus M, Heiland S (2015) Mono-exponential fitting in T
2-relaxometry: relevance of offset and first echo. PloS One 10:e0145255–e0145213. doi:10.1371/journal.pone.0145255
PubMed
PubMed Central
Article
CAS
Google Scholar
Mortamet B, Zeng D, Gerig G, Prastawa M, Bullitt E (2005) Effects of healthy aging measured by intracranial compartment volumes using a designed MR brain database. Med Image Comput Comput Assist Interv 8(Pt 1):383–391
Mueller EA, Moore MM, Kerr D et al (1998) Brain volume preserved in healthy elderly through the eleventh decade. Neurology 51:1555–1562
CAS
PubMed
Article
Google Scholar
Neto LL, Oliveira E, Correia F, Ferreira AG (2008) The human nucleus accumbens: where is it? a stereotactic, anatomical and magnetic resonance imaging study. Neuromodul Technol Neural Interface 11:13–22
Article
Google Scholar
Norris DG (2012) Spin-echo fMRI: the poor relation? NeuroImage 62:1109–1115. doi:10.1016/j.neuroimage.2012.01.003
PubMed
Article
Google Scholar
Okubo G, Okada T, Yamamoto A et al (2015) MP2RAGE for deep gray matter measurement of the brain: a comparative study with MPRAGE. J Magn Reson Imaging 43:55–62. doi:10.1002/jmri.24960
PubMed
Article
Google Scholar
Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113
CAS
PubMed
Article
Google Scholar
Persson N, Wu J, Zhang Q et al (2015) Age and sex related differences in subcortical brain iron concentrations among healthy adults. NeuroImage 122:385–398. doi:10.1016/j.neuroimage.2015.07.050
PubMed
PubMed Central
Article
Google Scholar
Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2009) MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage 47:493–500. doi:10.1016/j.neuroimage.2009.05.006
PubMed
PubMed Central
Article
Google Scholar
Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30:730–748. doi:10.1016/j.neubiorev.2006.07.001
PubMed
Article
Google Scholar
Ropele S, Langkammer C (2016) Iron quantification with susceptibility. NMR Biomed 1–9. doi:10.1002/nbm.3534
Saito N, Sakai O, Ozonoff Al, Jara H (2009) Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns. Magn Reson Imaging 27:895–906. doi:10.1016/j.mri.2009.05.006
PubMed
Article
Google Scholar
Salat DH, Kaye JA, Janowsky JS (2002) Greater orbital prefrontal volume selectively predicts worse working memory performance in older adults. Cereb Cortex 12:494–505. doi:10.1093/cercor/12.5.494
PubMed
Article
Google Scholar
Salat DH, Buckner RL, Snyder AZ et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730
PubMed
Article
Google Scholar
Scahill RI, Frost C, Jenkins R et al (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60:989–994. doi:10.1001/archneur.60.7.989
PubMed
Article
Google Scholar
Schäfer A, Wharton S, Gowland P, Bowtell R (2009) Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI. NeuroImage 48:126–137. doi:10.1016/j.neuroimage.2009.05.093
PubMed
Article
Google Scholar
Schenker C, Meier D, Wichmann W et al (1993) Age distribution and iron dependency of the T
2 relaxation time in the globus pallidus and putamen. Neuroradiology 35:119–124
CAS
PubMed
Article
Google Scholar
Schuepbach WMM, Rau J, Knudsen K et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368:610–622. doi:10.1056/NEJMoa1205158
CAS
PubMed
Article
Google Scholar
Schweser F, Deistung A, Lehr BW, Reichenbach JR (2011) Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage 54:2789–2807. doi:10.1016/j.neuroimage.2010.10.070
PubMed
Article
Google Scholar
Schweser F, Deistung A, Sommer K, Reichenbach JR (2012) Toward online reconstruction of quantitative susceptibility maps: Superfast dipole inversion. Magn Reson Med 69:1581–1593. doi:10.1002/mrm.24405
Article
Google Scholar
Schweser F, Deistung A, Reichenbach JR (2016) Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). Zeitschrift für medizinische Physik 26:6–34. doi:10.1016/j.zemedi.2015.10.002
PubMed
Article
Google Scholar
Siemonsen S, Finsterbusch J, Matschke J et al (2008) Age-dependent normal values of \(T_{2}^{*}\) and T
2′ in brain parenchyma. AJNR Am J Neuroradiol 29:950–955. doi:10.3174/ajnr.A0951
CAS
PubMed
Article
Google Scholar
Silver NC, Good CD, Barker GJ, MacManus DG (1997) Sensitivity of contrast enhanced MRI in multiple sclerosis. Effects of gadolinium dose, magnetization transfer contrast and delayed imaging. Brain 120:1149–1161. doi:10.1093/brain/120.7.1149
PubMed
Article
Google Scholar
Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155. doi:10.1002/hbm.10062
PubMed
Article
Google Scholar
Steen RG, Gronemeyer SA, Taylor JS (1995) Age-related changes in proton T
1 values of normal human brain. J Magn Reson Imaging 5:43–48. doi:10.1002/jmri.1880050111
CAS
PubMed
Article
Google Scholar
Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87:245–251. doi:10.1037/0033-2909.87.2.245
Article
Google Scholar
Steiger TK, Weiskopf N, Bunzeck N (2016) Iron level and myelin content in the ventral striatum predict memory performance in the aging brain. J Neurosci 36:3552–3558. doi:10.1523/JNEUROSCI.3617-15.2016
CAS
PubMed
PubMed Central
Article
Google Scholar
Stüber C, Morawski M, Schäfer A et al (2014) Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. NeuroImage 93:95–106. doi:10.1016/j.neuroimage.2014.02.026
PubMed
Article
CAS
Google Scholar
Stucht D, Danishad KA, Schulze P et al (2015) Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One 10:e0133921. doi:10.1371/journal.pone.0133921.s003
PubMed
PubMed Central
Article
CAS
Google Scholar
Team RC (2013) R: a language and environment for statistical computing.
Terribilli DB, Schaufelberger MS, Duran FLS et al (2011) Age-related gray matter volume changes in the brain during non-elderly adulthood. NBA 32:354–368. doi:10.1016/j.neurobiolaging.2009.02.008
Google Scholar
Tisdall MD, Reuter M, Qureshi A et al (2016) Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion. NeuroImage 127:11–22. doi:10.1016/j.neuroimage.2015.11.054
PubMed
Article
Google Scholar
Tourdias T, Saranathan M, Levesque IR et al (2014) Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7 T. NeuroImage 84:534–545. doi:10.1016/j.neuroimage.2013.08.069
PubMed
Article
Google Scholar
Ugurbil K, Adriany G, Akgun C et al (2007) High magnetic fields for imaging cerebral morphology, function, and biochemistry. In: Robitaille P-M, Berliner L (eds) Ultra high field magnetic resonance imaging. Springer, New York, p 285–342
Google Scholar
van de Moortele P-F, Akgun C, Adriany G et al (2005) B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518. doi:10.1002/mrm.20708
PubMed
Article
Google Scholar
van der Zwaag W, Schäfer A, Marques JP et al (2015) Recent applications of UHF-MRI in the study of human brain function and structure: a review. NMR Biomed n/a–n/a. doi:10.1002/nbm.3275
Visser E, Keuken MC, Douaud G et al (2016a) Automatic segmentation of the striatum and globus pallidus using MIST: multimodal image segmentation tool. NeuroImage 125:479–497. doi:10.1016/j.neuroimage.2015.10.013
PubMed
PubMed Central
Article
Google Scholar
Visser E, Keuken MC, Forstmann BU, Jenkinson M (2016b) Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age. NeuroImage 139:324–336. doi:10.1016/j.neuroimage.2016.06.039
PubMed
PubMed Central
Article
Google Scholar
Voelker MN, Kraff O, Brenner D et al (2016) The traveling heads: multicenter brain imaging at 7 T. 1–17. doi:10.1007/s10334-016-0541-8
Voorn P, Vanderschuren LJMJ, Groenewegen HJ et al (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–474. doi:10.1016/j.tins.2004.06.006
CAS
PubMed
Article
Google Scholar
Vos SB, Jones DK, Viergever MA et al (2011) Partial volume effect as a hidden covariate in DTI analyses. NeuroImage 55(4):1566–1576. doi:10.1016/j.neuroimage.2011.01.048
PubMed
Article
Google Scholar
Walhovd KB, Fjell AM, Reinvang I et al (2005) Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging 26:1261–1270. doi:10.1016/j.neurobiolaging.2005.05.020
PubMed
Article
Google Scholar
Weiskopf N, Mohammadi S, Lutti A, Callaghan MF (2015) Advances in MRI-based computational neuroanatomy. Curr Opin Neurol 28:313–322. doi:10.1097/wco.0000000000000222
CAS
PubMed
Article
Google Scholar
Wenger E, Mårtensson J, Noack H et al (2014) Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains. Hum Brain Mapp 35:4236–4248. doi:10.1002/hbm.22473
PubMed
Article
Google Scholar
Whittall KP, Mackay AL, Graeb DA et al (1997) In vivo measurement of T
2 distributions and water contents in normal human brain. Magn Reson Med 37:34–43. doi:10.1002/mrm.1910370107
CAS
PubMed
Article
Google Scholar
Yeatman JD, Wandell BA, Mezer AA (2014) Lifespan maturation and degeneration of human brain white matter. Nat Commun 5:1–12. doi:10.1038/ncomms5932
Article
CAS
Google Scholar
Yin X, Shah S, Katsaggelos AK (2010) Improved R2* measurement accuracy with absolute SNR truncation and optimal coil combination. NMR Biomed 23:1127–1136. doi:10.1002/nbm.1539
PubMed
PubMed Central
Article
Google Scholar
Zecca L, Youdim M, Riederer P et al (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873
CAS
PubMed
Article
Google Scholar
Zheng W, Nichol H, Liu S et al (2013) Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging. NeuroImage 78:68–74. doi:10.1016/j.neuroimage.2013.04.022
CAS
PubMed
Article
Google Scholar
Zivadinov R (2007) Can imaging techniques measure neuroprotection and remyelination in multiple sclerosis? Neurology 68:S72–S82. doi:10.1212/01.wnl.0000275236.51129.d2
PubMed
Article
Google Scholar