Skip to main content

Advertisement

Log in

Adult-born dentate granule cells show a critical period of dendritic reorganization and are distinct from developmentally born cells

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Adult-born dentate granule cells (abGCs) exhibit a critical developmental phase during function integration. The time window of this phase is debated and whether abGCs become indistinguishable from developmentally born mature granule cells (mGCs) is uncertain. We analyzed complete dendritic reconstructions from abGCs and mGCs using viral labeling. AbGCs from 21–77 days post intrahippocampal injection (dpi) exhibited comparable dendritic arbors, suggesting that structural maturation precedes functional integration. In contrast, significant structural differences were found compared to mGCs: AbGCs had more curved dendrites, more short terminal segments, a different branching pattern, and more proximal terminal branches. Morphological modeling attributed these differences to developmental dendritic pruning and postnatal growth of the dentate gyrus. We further correlated GC morphologies with the responsiveness to unilateral medial perforant path stimulation using the immediate–early gene Arc as a marker of synaptic activation. Only abGCs at 28 and 35 dpi but neither old abGCs nor mGCs responded to stimulation with a remodeling of their dendritic arbor. Summarized, abGCs stay distinct from mGCs and their dendritic arbor can be shaped by afferent activity during a narrow critical time window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcántara S, Ruiz M, Arcangelo GD, Ezan F, De Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18:7779–7799

    PubMed  Google Scholar 

  • Amaral D, Scharfman H, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 153:390–394

    Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251

    Article  CAS  PubMed  Google Scholar 

  • Bergami M, Masserdotti G, Temprana SG, Motori E, Eriksson TM, Göbel J, Yang SM, Conzelmann KK, Schinder AF, Götz M, Berninger B (2015) A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron 85:710–717

    Article  CAS  PubMed  Google Scholar 

  • Bergmann O, Spalding KL, Frisén J (2015) Adult neurogenesis in humans. Cold Spring Harb Perspect Biol 7:1–12

    Article  CAS  Google Scholar 

  • Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The arc of synaptic memory. Exp Brain Res 200:125–140

    Article  PubMed  Google Scholar 

  • Branco T, Häusser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20:494–502

    Article  CAS  PubMed  Google Scholar 

  • Brunner J, Neubrandt M, Van-Weert S, Andrási T, Kleine Borgmann FB, Jessberger S, Szabadics J (2014) Adult-born granule cells mature through two functionally distinct states. Elife 24:e03104

    Google Scholar 

  • Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302:206–219

    Article  CAS  PubMed  Google Scholar 

  • Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuntz H, Borst A, Segev I (2007) Optimization principles of dendritic structure. Theor Biol Med Model 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuntz H, Forstner F, Haag J, Borst A (2008) The morphological identity of insect dendrites. PLoS Comput Biol 4:e1000251

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuntz H, Forstner F, Borst A, Häusser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol 6:e1000877

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuntz H, Forstner F, Borst A, Häusser M (2011) The TREES toolbox—probing the basis of axonal and dendritic branching. Neuroinformatics 9:91–96

    Article  PubMed  Google Scholar 

  • D’Arcangelo G (2014) Reelin in the years: controlling neuronal migration and maturation in the mammalian brain. Adv Neurosci 2014:1–19

    Article  Google Scholar 

  • Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. Elife 2:e00312

    Article  PubMed  PubMed Central  Google Scholar 

  • Desmond NL, Levy WB (1982) A quantitative anatomical study of the granule cell dendritic fields of the rat dentate gyrus using a novel probabilistic method. J Comp Neurol 212:131–145

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emoto K (2011) Dendrite remodeling in development and disease. Dev Growth Differ 53:277–286

    Article  CAS  PubMed  Google Scholar 

  • Espósito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ, Schinder AF (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25:10074–10086

    Article  PubMed  Google Scholar 

  • Fitzsimons CP, van Hooijdonk LW, Schouten M, Zalachoras I, Brinks V, Zheng T, Schouten TG, Saaltink DJ, Dijkmans T, Steindler DA, Verhaagen J, Verbeek FJ, Lucassen PJ, de Kloet ER, Meijer OC, Karst H, Joels M, Oitzl MS, Vreugdenhil E (2013) Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry 18:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Fornasiero EF, Bonanomi D, Benfenati F, Valtorta F (2010) The role of synapsins in neuronal development. Cell Mol Life Sci 67:1383–1396

    Article  CAS  PubMed  Google Scholar 

  • Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267

    Article  PubMed  Google Scholar 

  • Frotscher M (2010) Role for Reelin in stabilizing cortical architecture. Trends Neurosci 33:407–414

    Article  CAS  PubMed  Google Scholar 

  • Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Yang C-H, Hsu K-S, Ming G-L, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves JT, Bloyd CW, Shtrahman M, Johnston ST, Schafer ST, Parylak SL, Tran T, Chang T, Gage FH (2016) In vivo imaging of dendritic pruning in dentate granule cells. Nat Neurosci 19:788–791

    Article  PubMed  PubMed Central  Google Scholar 

  • Green EJ, Juraska JM (1985) The dendritic morphology of hippocampal dentate granule cells varies with their position in the granule cell layer: a quantitative Golgi study. Exp Brain Res 59:582–586

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S (2012) Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15:1700–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu T-T, Lee C-T, Tai M-H, Lien C-C (2015) Differential recruitment of dentate gyrus interneuron types by commissural versus perforant pathways. Cereb Cortex 26:2715–2727

    Article  PubMed  Google Scholar 

  • Ivanco TL, Racine RJ, Kolb B (2000) Morphology of layer III pyramidal neurons is altered following induction of LTP in sensorimotor cortex of the freely moving rat. Synapse 37:16–22

    Article  CAS  PubMed  Google Scholar 

  • Jedlicka P, Schwarzacher SW, Winkels R, Kienzler F, Frotscher M, Bramham CR, Schultz C, Bas Orth C, Deller T (2009) Impairment of in vivo theta-burst long-term potentiation and network excitability in the dentate gyrus of synaptopodin-deficient mice lacking the spine apparatus and the cisternal organelle. Hippocampus 19:130–140

    Article  CAS  PubMed  Google Scholar 

  • Jedlicka P, Vnencak M, Krueger DD, Jungenitz T, Brose N, Schwarzacher SW (2015) Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo. Brain Struct Funct 220:47–58

    Article  CAS  PubMed  Google Scholar 

  • Johnston ST, Shtrahman M, Parylak S, Gonçalves JT, Gage FH (2016) Paradox of pattern separation and adult neurogenesis: a dual role for new neurons balancing memory resolution and robustness. Neurobiol Learn Mem 129:60–68

    Article  PubMed  Google Scholar 

  • Jungenitz T, Radic T, Jedlicka P, Schwarzacher SW (2014) High-frequency stimulation induces gradual immediate early gene expression in maturing adult-generated hippocampal granule cells. Cereb Cortex 24:1845–1857

    Article  PubMed  Google Scholar 

  • Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G (2015) Activity dependency and aging in the regulation of adult neurogenesis. Cold Spring Harb Perspect Biol 7:a018929

    Article  PubMed  Google Scholar 

  • Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14:536–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528

    Article  CAS  PubMed  Google Scholar 

  • Kügler S, Meyn L, Holzmüller H, Gerhardt E, Isenmann S, Schulz JB, Bähr M (2001) Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol Cell Neurosci 17:78–96

    Article  PubMed  Google Scholar 

  • Kügler S, Kilic E, Bähr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347

    Article  PubMed  Google Scholar 

  • Kuroda H, Kutner RH, Bazan NG, Reiser J (2008) A comparative analysis of constitutive and cell-specific promoters in the adult mouse hippocampus using lentivirus vector-mediated gene transfer. J Gene Med 10:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Laplagne DA, Espósito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H, Gage FH, Schinder AF (2006) Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 4:e409

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Kang E, Goodsmith D, Yoon DY, Song H, Knierim JJ, Ming G, Christian KM (2015) DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats. Front Syst Neurosci 9:1–8

    Article  Google Scholar 

  • Lefebvre JL, Sanes JR, Kay JN (2015) Development of dendritic form and function. Annu Rev Cell Dev Biol 31:741–777

    Article  CAS  PubMed  Google Scholar 

  • Lemaire V, Tronel S, Montaron M-F, Fabre A, Dugast E, Abrous DN (2012) Long-lasting plasticity of hippocampal adult-born neurons. J Neurosci 32:3101–3108

    Article  CAS  PubMed  Google Scholar 

  • Li G, Pleasure SJ (2010) Ongoing interplay between the neural network and neurogenesis in the adult hippocampus. Curr Opin Neurobiol 20:126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorens-Martín M, Rábano A, Ávila J (2016) The Ever-Changing Morphology of Hippocampal Granule Neurons in Physiology and Pathology. Front Neurosci 9:1–20

    Article  Google Scholar 

  • Loy R, Lynch G, Cotman CW (1977) Development of afferent lamination in the fascia dentata of the rat. Brain Res 121:229–243

    Article  CAS  PubMed  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445

    Article  CAS  PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  CAS  PubMed  Google Scholar 

  • Marín-Burgin A, Mongiat LA, Pardi MB, Schinder AF (2012) Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335:1238–1242

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathews EA, Morgenstern NA, Piatti VC, Zhao C, Jessberger S, Schinder AF, Gage FH (2010) A distinctive layering pattern of mouse dentate granule cells is generated by developmental and adult neurogenesis. J Comp Neurol 518:4479–4490

    Article  PubMed  PubMed Central  Google Scholar 

  • Monfils M-H, Teskey GC (2004) Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse 53:114–121

    Article  CAS  PubMed  Google Scholar 

  • Mongiat LA, Espósito MS, Lombardi G, Schinder AF (2009) Reliable activation of immature neurons in the adult hippocampus. PLoS One 4:e5320

    Article  PubMed  PubMed Central  Google Scholar 

  • Muramatsu R, Ikegaya Y, Matsuki N, Koyama R (2007) Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience 148:593–598

    Article  CAS  PubMed  Google Scholar 

  • Myers CEC, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21:1190–1215

    Article  PubMed  Google Scholar 

  • Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Barrera VR, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norkett R, Modi S, Birsa N, Atkin TA, Ivankovic D, Pathania M, Trossbach SV, Korth C, Hirst WD, Kittler JT (2016) DISC1-dependent regulation of mitochondrial dynamics controls the morphogenesis of complex neuronal dendrites. J Biol Chem 291:613–629

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa N, Saitoh Y, Tokunaga E, Nihonmatsu I, Ozawa F, Murayama A, Shibata F, Kitamura T, Inokuchi K (2012) Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity. PLoS One 7:e45270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K, Nonaka M, Kawashima T, Fujii H, Takemoto-Kimura S, Abe M, Natsume R, Chowdhury S, Sakimura K, Worley PF, Bito H (2012) Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149:886–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peebles CL, Yoo J, Thwin MT, Palop JJ, Noebels JL, Finkbeiner S (2010) Arc regulates spine morphology and maintains network stability in vivo. Proc Natl Acad Sci USA 107:18173–18178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA 95:3221–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Radic T, Al-Qaisi O, Jungenitz T, Beining M, Schwarzacher SW (2015) Differential structural development of adult-born septal hippocampal granule cells in the Thy1-GFP mouse, nuclear size as a new index of maturation. PLoS One 10:e0135493

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahimi O, Claiborne BJ (2007) Morphological development and maturation of granule neuron dendrites in the rat dentate gyrus. Prog Brain Res 163:167–181

    Article  PubMed  Google Scholar 

  • Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves TM, Steward O (1986) Emergence of the capacity for LTP during reinnervation of the dentate gyrus: evidence that abnormally shaped spines can mediate LTP. Exp Brain Res 65:167–175

    Article  CAS  PubMed  Google Scholar 

  • Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW (2015) Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci 35:10600–10612

    Article  CAS  PubMed  Google Scholar 

  • Ribak CE, Shapiro LA (2007) Dendritic development of newly generated neurons in the adult brain. Brain Res Rev 55:390–394

    Article  PubMed  Google Scholar 

  • Rihn LL, Claiborne BJ (1990) Dendritic growth and regression in rat dentate granule cells during late postnatal development. Dev Brain Res 54:115–124

    Article  CAS  Google Scholar 

  • Rosenzweig S, Wojtowicz JM (2011) Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites. Front Neurosci 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441

    Article  CAS  PubMed  Google Scholar 

  • Schneider CJ, Cuntz H, Soltesz I (2014) Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations. PLoS Comput Biol 10:e1003921

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuldiner O, Yaron A (2014) Mechanisms of developmental neurite pruning. Cell Mol Life Sci 72:101–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarzacher S, Vuksic M, Haas C, Burbach G, Sloviter RS, Deller T (2006) Neuronal hyperactivity induces astrocytic expression of neurocan in the adult rat hippocampus. Glia 714:704–714

    Article  Google Scholar 

  • Sengupta P (2013) The Laboratory Rat: relating Its Age With Human’s. Int J Prev Med 4:624–630

    PubMed  PubMed Central  Google Scholar 

  • Sidiropoulou K, Pissadaki EK, Poirazi P (2006) Inside the brain of a neuron. EMBO Rep 7:886–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šišková Z, Justus D, Kaneko H, Friedrichs D, Henneberg N, Beutel T, Pitsch J, Schoch S, Becker A, von der Kammer H, Remy S (2014) Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer’s disease. Neuron 84:1023–1033

    Article  PubMed  Google Scholar 

  • St John JL, Rosene DL, Luebke JI (1997) Morphology and electrophysiology of dentate granule cells in the rhesus monkey: comparison with the rat. J Comp Neurol 387:136–147

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751

    Article  CAS  PubMed  Google Scholar 

  • Stone SSD, Teixeira CM, Zaslavsky K, Wheeler AL, Martinez-Canabal A, Wang AH, Sakaguchi M, Lozano AM, Frankland PW (2011) Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus 21:1348–1362

    Article  PubMed  Google Scholar 

  • Sun GJ, Sailor KA, Mahmood QA, Chavali N, Christian KM, Song H, Ming G (2013) Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci 33:11400–11411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavosanis G (2012) Dendritic structural plasticity. Dev Neurobiol 72:73–86

    Article  PubMed  Google Scholar 

  • Teixeira CM, Kron MM, Masachs N, Zhang H, Lagace DC, Martinez A, Reillo I, Duan X, Bosch C, Pujadas L, Brunso L, Song H, Eisch AJ, Borrell V, Howell BW, Parent JM, Soriano E (2012) Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus. J Neurosci 32:12051–12065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temprana SG, Mongiat LA, Yang SM, Trinchero MF, Alvarez DD, Kropff E, Giacomini D, Beltramone N, Lanuza GM, Schinder AF (2014) Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron 85:116–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Teskey GC, Monfils M-HH, Silasi G, Kolb B, Young NA, Van Rooyen F, Larson SEM, Flynn C, Monfils M-HH, Kleim JA, Henry LC, Goertzen CD, Silasi G, Kolb B (2006) Neocortical kindling is associated with opposing alterations in dendritic morphology in neocortical layer V and striatum from neocortical layer III. Synapse 59:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tronel S, Lemaire V, Charrier V, Montaron M-F, Abrous DN (2015) Influence of ontogenetic age on the role of dentate granule neurons. Brain Struct Funct 220:645–661

    Article  PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  Google Scholar 

  • Vuksic M, Del Turco D, Bas Orth C, Burbach GJ, Feng G, Müller CM, Schwarzacher SW, Deller T (2008) 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse. Hippocampus 18:364–375

    Article  CAS  PubMed  Google Scholar 

  • Vuksic M, Del Turco D, Vlachos A, Schuldt G, Müller CM, Schneider G, Deller T (2011) Unilateral entorhinal denervation leads to long-lasting dendritic alterations of mouse hippocampal granule cells. Exp Neurol 230:176–185

    Article  PubMed  Google Scholar 

  • Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM (2008) Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59:84–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RC (1981) Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. I. Differences between normal and reinnervated dentate gyrus. J Neurophysiol 46:324–338

    CAS  PubMed  Google Scholar 

  • Wilson RC, Levy WB, Steward O (1979) Functional effects of lesion-induced plasticity: long term potentiation in formal and lesion-induced temporodentate connections. Brain Res 176:65–78

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Fan W, Wu P, Deng J, Liu J, Niu Y, Li M, Deng J (2014) Characterization of hippocampal Cajal–Retzius cells during development in a mouse model of Alzheimer’s disease (Tg2576). Neural Regen Res 9:394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Teng EM, Summers RG, Ming G-L, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the LOEWE-Program “Neuronal Coordination Research Focus Frankfurt” (NeFF), by the German Science Foundation (CRC 1180), by the Federal Ministry of Education and Research (BMBF, to PJ, No. 01GQ1203A), by a Young Investigators Grant (from the faculty of medicine Goethe-University to PJ), and by a BMBF grant (No. 01GQ1406, Bernstein Award 2013) to HC. MB was further supported by the International Max Planck Research School (IMPRS) for Neural Circuits in Frankfurt. We thank Torsten Felske for help with GC reconstruction. We are indebted to Ute Fertig for technical assistance in preparing and staining of hippocampal slices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Beining.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

M. Beining, T. Jungenitz are joint-first authors.

H. Cuntz, P. Jedlicka, S. W. Schwarzacher are joint-last authors.

Dendritic morphologies of early- and adult-born dentate granule cells that had been reconstructed for this study are available soon on the widely-used NeuroMorpho data base (Ascoli et al. 2007).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beining, M., Jungenitz, T., Radic, T. et al. Adult-born dentate granule cells show a critical period of dendritic reorganization and are distinct from developmentally born cells. Brain Struct Funct 222, 1427–1446 (2017). https://doi.org/10.1007/s00429-016-1285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1285-y

Keywords

Navigation