Skip to main content
Log in

Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan–gnathostome transition

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The cerebellum is present in all extant gnathostomes or jawed vertebrates, of which cartilaginous fishes represent the most ancient radiation. Since the isthmic organizer induces the formation of the cerebellum, comparative genoarchitectonic analysis on the meso-isthmo-cerebellar region of cartilaginous fishes with respect to that of jawless vertebrates could reveal why the isthmic organizer acquires the ability to induce the formation of the cerebellum in gnathostomes. In the present work we analyzed the expression pattern of a variety of genes related to the cerebellar formation and patterning (ScOtx2, ScGbx2, ScFgf8, ScLmx1b, ScIrx1, ScIrx3, ScEn2, ScPax6 and ScLhx9) by in situ hybridization, and the distribution of Pax6 protein in the developing hindbrain of the shark Scyliorhinus canicula. The genoarchitectonic code in this species revealed high degree of conservation with respect to that of other gnathostomes. This resemblance may reveal the features of the ancestral condition of the gene network operating for specification of the rostral hindbrain patterning. Accordingly, the main subdivisions of the rostral hindbrain of S. canicula could be recognized. Our results support the existence of a rhombomere 0, identified as the ScFgf8/ScGbx2/ScEn2-positive and mainly negative ScIrx3 domain just caudal to the midbrain ScIrx1/ScOtx2/ScLmx1b-positive domain. The differential ScEn2 and Pax6 expression in the rhombomere 1 revealed anterior and posterior subdivisions. Interestingly, dissimilarities between S. canicula and lampreys (jawless vertebrates) were noted in the expression of Irx, Lhx and Pax genes, which could be part of significant gene network changes through evolution that caused the emergence of the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi N, Takechi M, Hirai T, Kuratani S (2012) Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 14:257–276

    Article  CAS  PubMed  Google Scholar 

  • Adams KA, Maida JM, Golden JA, Riddle RD (2000) The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127:1857–1867

    CAS  PubMed  Google Scholar 

  • Allen Developing Mouse Brain Atlas [Internet] (2009) Allen Institute for Brain Science, Seattle. http://developingmouse.brain-map.org

  • Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferrán JL, Martínez-de-la-Torre M, Puelles L (2013) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 218:1229–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca P, Puelles L (2005) Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Res Rev 49:179–190

    Article  PubMed  Google Scholar 

  • Ballard WW, Mellinger J, Lechenault H (1993) A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J Exp Zool 267:318–336

    Article  Google Scholar 

  • Bellefroid EJ, Kobbe A, Gruss P, Pieler T, Gurdon JB, Papalopulu N (1998) Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J 17:191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22:2275–2284

    Article  CAS  PubMed  Google Scholar 

  • Bosse A, Zülch A, Becker MB, Torres M, Gómez-Skarmeta JL, Modolell J, Gruss P (1997) Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech Dev 69:169–181

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Cheng CW, Hui C, Strähle U, Cheng SH (2001) Identification and expression of zebrafish Iroquois homeobox gene irx1. Dev Genes Evol 211:442–444

    Article  CAS  PubMed  Google Scholar 

  • Cheng CW, Yan CH, Choy SW, Hui MN, Hui CC, Cheng SH (2007) Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev Dyn 236:2661–2667

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Millen KJ (2004) Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J Neurosci 24:5694–56703

    Article  CAS  PubMed  Google Scholar 

  • Cohen DR, Cheng CW, Cheng SH, Hui CC (2000) Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mech Dev 91:317–321

    Article  CAS  PubMed  Google Scholar 

  • Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Rijli FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ (2013) Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev Biol 377:428–448

    Article  CAS  PubMed  Google Scholar 

  • Coolen M, Sauka-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, Da Silva C, Plouhinec JL, Robert B, Wincker P, Shi DL, Mazan S (2007) Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan. PLoS ONE 2:e374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coolen M, Menuet A, Chassoux D, Compagnucci C, Henry S, Lévèque L, Da Silva C, Gavory F, Samain S, Wincker P, Thermes C, D’Aubenton-Carafa Y, Rodriguez-Moldes I, Naylor G, Depew M, Sourdaine P, Mazan S (2009) The dogfish Scyliorhinus canicula, a reference in jawed vertebrates. In: Behringer RR, Johnson AD, Krumlauf RE (eds) Emerging model organisms. A laboratory manual, vol 1. CSHL Press, Cold Spring Harbor, pp 431–446

    Google Scholar 

  • Ferreiro-Galve S, Candal E, Rodríguez-Moldes I (2012a) Dynamic expression of Pax6 in the shark olfactory system: evidence for the presence of Pax6 cells along the olfactory nerve pathway. J Exp Zool B (Mol Dev Evol) 318:79–90

    Article  CAS  Google Scholar 

  • Ferreiro-Galve S, Rodríguez-Moldes I, Candal E (2012b) Pax6 expression during retinogenesis in sharks: comparison with markers of cell proliferation and neuronal differentiation. J Exp Zool (Mol Dev Evol) 318:91–108

    Article  CAS  Google Scholar 

  • Friedman M, Brazeau MD (2013) A jaw-dropping fossil fish. Nature 502:175–177

    Article  CAS  PubMed  Google Scholar 

  • Germot A, Lecointre G, Plouhinec JL, Le Mentec C, Girardot F, Mazan S (2001) Structural evolution of Otx genes in craniates. Mol Biol Evol 18:1668–1678

    Article  CAS  PubMed  Google Scholar 

  • Glavic A, Gómez-Skarmeta JL, Mayor R (2002) The homeoprotein Xiro1 is required for midbrain–hindbrain boundary formation. Development 129:1609–1621

    CAS  PubMed  Google Scholar 

  • Gómez-Skarmeta JL, Modolell J (2002) Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 12:403–408

    Article  PubMed  Google Scholar 

  • Green MJ, Wingate RJ (2014) Developmental origins of diversity in cerebellar output nuclei. Neural Dev 9:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJ (2014) Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 141:389–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Qiu HY, Huang Y, Chen H, Yang RQ, Chen SD, Johnson RL, Chen ZF, Ding YQ (2007) Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice. Development 134:317–325

    Article  CAS  PubMed  Google Scholar 

  • Haldin CE, Nijjar S, Massé K, Barnett MW, Jones EA (2003) Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene. Int J Dev Biol 47:253–262

    CAS  PubMed  Google Scholar 

  • Hammond KL, Baxendale S, McCauley DW, Ingham PW, Whitfield TT (2009) Expression of patched, prdm1 and engrailed in the lamprey somite reveals conserved responses to Hedgehog signaling. Evol Dev 11:27–40

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Millet S, Simeone A, Alvarado-Mallart RM (1999) Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mech Dev 81:175–178

    Article  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Millet S, Bloch-Gallego E, Alvarado-Mallart RM (2005a) Specification of the meso-isthmo-cerebellar region: the Otx2/Gbx2 boundary. Brain Res Rev 49:134–149

    Article  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Martínez de la Torre M, Alvarado-Mallart RM, Puelles L (2005b) A distinct preisthmic histogenetic domain is defined by overlap of Otx2 and Pax2 gene expression in the avian caudal midbrain. J Comp Neurol 483:17–29

    Article  PubMed  CAS  Google Scholar 

  • Hirth F, Kammermeier L, Frei E, Walldorf U, Noll M, Reichert H (2003) An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130:2365–2373

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ (2013) Evolution of new characters after whole genome duplications: insights from amphioxus. Semin Cell Dev Biol 24:101–109

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ, Short S (2008) Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. Brain Behav Evol 72:91–105

    Article  PubMed  Google Scholar 

  • Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK (2013) Evolution of bilaterian central nervous systems: a single origin? EvoDevo 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikuta T, Saiga H (2007) Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain–hindbrain boundary region. Dev Biol 312:631–643

    Article  CAS  PubMed  Google Scholar 

  • Inoue F, Parvin MS, Yamasu K (2008) Transcription of fgf8 is regulated by activating and repressive cis-elements at the midbrain–hindbrain boundary in zebrafish embryos. Dev Biol 316:471–486

    Article  CAS  PubMed  Google Scholar 

  • Irimia M, Piñeiro C, Maeso I, Gómez-Skarmeta JL, Casares F, García-Fernández J (2010) Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizar. EvoDevo 1:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janvier P (2008) The brain in the early fossil jawless vertebrates: evolutionary information from an empty nutshell. Brain Res Bull 75:314–318

    Article  CAS  PubMed  Google Scholar 

  • Jászai J, Reifers F, Picker A, Langenberg T, Brand M (2003) Isthmus-to-midbrain transformation in the absence of midbrain–hindbrain organizer activity. Development 130:6611–6623

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Guri E, Pujades C (2011) An ancient mechanism of hindbrain patterning has been conserved in vertebrate evolution. Evol Dev 13:38–46

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12:736–741

    Article  CAS  PubMed  Google Scholar 

  • Kerner P, Ikmi A, Coen D, Vervoort M (2009) Evolutionary history of the iroquois/Irx genes in metazoans. BMC Evol Biol 9:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kikuta H, Kanai M, Ito Y, Yamasu K (2003) gbx2 Homeobox gene is required for the maintenance of the isthmic region in the zebrafish embryonic brain. Dev Dyn 228:433–450

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93

    CAS  PubMed  Google Scholar 

  • Koenig SF, Brentle S, Hamdi K, Fichtner D, Wedlich D, Gradl D (2010) En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain. Dev Biol 340:318–328

    Article  CAS  PubMed  Google Scholar 

  • Kuratani S, Horigome N (2000) Developmental morphology of branchiomeric nerves in a catshark, Scylorhinus torazame, with special reference to rhombomeres, cephalic mesoderm, and distribution patterns of cephalic crest cells. Zool Sci 17:893–909

    Article  Google Scholar 

  • Kuratani S, Nobusada Y, Horigome N, Shigetani Y (2001) Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc Lond B Biol Sci 356:1615–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuratani S, Kuraku S, Murakami Y (2002) Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis 34:175–183

    Article  CAS  PubMed  Google Scholar 

  • Lannoo MJ, Hawkes R (1997) A search for primitive Purkinje cells: zebrin II expression in sea lampreys (Petromyzon marinus). Neurosci Lett 237:53–55

    Article  CAS  PubMed  Google Scholar 

  • Lebel M, Agarwal P, Cheng CW, Kabir MG, Chan TY, Thanabalasingham V, Zhang X, Cohen DR, Husain M, Cheng SH, Bruneau BG, Hui CC (2003) The Iroquois homeobox gene Irx2 is not essential for normal development of the heart and midbrain–hindbrain boundary in mice. Mol Cell Biol 23:8216–8225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lekven AC, Buckles GR, Kostakis N, Moon RT (2003) Wnt1 and wnt10b function redundantly at the zebrafish midbrain–hindbrain boundary. Dev Biol 254:172–187

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Joyner AL (2001) EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128:181–191

    CAS  PubMed  Google Scholar 

  • Liu A, Losos K, Joyner AL (1999) FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126:4827–4838

    CAS  PubMed  Google Scholar 

  • Liu ZR, Shi M, Hu ZL, Zheng MH, Du F, Zhao G, Ding YQ (2010) A refined map of early gene expression in the dorsal rhombomere 1 of mouse embryos. Brain Res Bull 82:74–82

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zhu M, Long JA, Zhao W, Senden TJ, Jia L, Quiao T (2012) The earliest known stem-tetrapod from the Lower Devonian of China. Nat Commun 3:1160

    Article  PubMed  CAS  Google Scholar 

  • Marín F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev Biol 163:19–37

    Article  PubMed  Google Scholar 

  • Marín F, Aroca P, Puelles L (2008) Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 323:230–247

    Article  PubMed  CAS  Google Scholar 

  • Martínez S (2001) The isthmic organizer and brain regionalization. Int J Dev Biol 44:367–371

    Google Scholar 

  • Martínez S, Andreu A, Mecklenburg N, Echevarría D (2013) Cellular and molecular basis of cerebellar development. Front Neuroanat 7:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Nishihara S, Kamimura M, Shiraishi T, Otoguro T, Uehara M, Maeda Y, Ogura K, Lumsden A, Ogura T (2004) The prepattern transcription factor Irx2, a target of the FGF8/MAP kinasecascade, is involved in cerebellum formation. Nat Neurosci 7:605–612

    Article  CAS  PubMed  Google Scholar 

  • Matsuura M, Nishihara H, Onimaru K, Kokubo N, Kuraku S, Kusakabe R, Okada N, Kuratani S, Tanaka M (2008) Identification of four Engrailed genes in the Japanese lamprey, Lethenteron japonicum. Dev Dyn 237:1581–1589

    Article  CAS  PubMed  Google Scholar 

  • Mazan S, Jaillard D, Baratte B, Janvier P (2000) Otx1 gene-controlled morphogenesis of the horizontal semicircular canal and the origin of the gnathostome characteristics. Evol Dev 2:186–193

    Article  CAS  PubMed  Google Scholar 

  • Mishima Y, Lindgren AG, Chizhikov VV, Johnson RL, Millen KJ (2009) Overlapping function of Lmx1a and Lmx1b in anterior hindbrain roof plate formation and cerebellar growth. J Neurosci 29:11377–11384

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Bodznick D, Yopak KE (2012) The cerebellum and cerebellum-like structures of cartilaginous fishes. Brain Behav Evol 80:152–165

    Article  PubMed  Google Scholar 

  • Moreno N, Bachy I, Rétaux S, González A (2005) LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis. J Comp Neurol 485:240–254

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Bravo JA, Perez-Balaguer A, Martinez-Lopez JE, Aroca P, Puelles L, Martinez S, Puelles E (2014) Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Struct Funct 219:777–792. doi:10.1007/s00429-013-0534-6

    Article  CAS  PubMed  Google Scholar 

  • Mueller T, Vernier P, Wullimann MF (2006) A phylotypic stage in vertebrate brain development: gABA cell patterns in zebrafish compared with mouse. J Comp Neurol 494:620–634

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Watanabe A (2009) Development of the central and peripheral nervous systems in the lamprey. Dev Growth Differ 51:197–205

    Article  PubMed  Google Scholar 

  • Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, Kuratani S (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128:3521–3531

    CAS  PubMed  Google Scholar 

  • Murakami Y, Uchida K, Rijli FM, Kuratani S (2005) Evolution of the brain developmental plan: insights from agnathans. Dev Biol 280:249–259

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Sato T, Suzuki-Hirano A (2008) Isthmus organizer for mesencephalon and metencephalon. Dev Growth Differ 50(Suppl 1):S113–S118

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (2011) The structural, functional and molecular organization of the brainstem. Front Neuroanat 5:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Northcutt RG (2002) Understanding vertebrate brain evolution. Integr Comp Biol 42:743–756

    Article  PubMed  Google Scholar 

  • O’Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD (2005) Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 132:3163–3173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osório J, Mazan S, Rétaux S (2005) Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: insights from LIM-homeodomain, Pax and hedgehog genes. Dev Biol 288:100–112

    Article  PubMed  CAS  Google Scholar 

  • Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signaling centres. Nature 483:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plouhinec JL, Leconte L, Sauka-Spengler TS, Bovolenta P, Mazan S, Saule S (2005) Comparative analysis of gnathostome Otx gene expression patterns in the developing eye: implications for the functional evolution of the multigene family. Dev Biol 278:560–575

    Article  CAS  PubMed  Google Scholar 

  • Pose-Méndez S, Candal E, Adrio F, Rodríguez-Moldes I (2014) Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol 522:131–168

    Article  PubMed  Google Scholar 

  • Puelles L, Ferrán JL (2012) Concept of neural genoarchitecture and its genomic fundament. Front Neuroanat 6:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Marín F, MartínezdelaTorre S, Martínez S (1995) The midbrain–hindbrain junction: a model system for brain regionalization through morphogenetic neuroepithelial interactions. In: Lonai P (ed) Towards analysis of vertebrate development. Harwood Publishers, Chur, pp 173–197

    Google Scholar 

  • Rétaux S, Kano S (2010) Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol 50:98–109

    Article  PubMed  CAS  Google Scholar 

  • Rhinn M, Lun K, Amores A, Yan YL, Postlethwait JH, Brand M (2003) Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling. Mech Dev 120:919–936

    Article  CAS  PubMed  Google Scholar 

  • Robertshaw E, Kiecker C (2012) Phylogenetic origins of brain organisers. Scientifica 2012:475017

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Moldes I, Ferreiro-Galve S, Carrera I, Sueiro C, Candal E, Mazan S, Anadón R (2008) Development of the cerebellar body in sharks: spatiotemporal relations of Pax6-expression, cell proliferation and differentiation. Neurosci Lett 432:105–110

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Moldes I, Carrera I, Pose-Méndez S, Quintana-Urzainqui I, Candal E, Anadón R, Mazan S, Ferreiro-Galve S (2011) Regionalization of the shark hindbrain: a survey of an ancestral organization. Front Neuroanat 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Seguel E, Alarcón P, Gómez-Skarmeta JL (2009) The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. Dev Biol 329:258–268

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Joyner AL (2009) The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development 136:3617–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Nakamura H (2004) The Fgf8 signal causes cerebellar differentiation by activating the Ras-ERK signaling pathway. Development 131:4275–4285

    Article  CAS  PubMed  Google Scholar 

  • Scholpp S, Lohs C, Brand M (2003) Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130:4881–4893

    Article  CAS  PubMed  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40

    CAS  PubMed  Google Scholar 

  • Simeone A (2000) Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet 16:237–240

    Article  CAS  PubMed  Google Scholar 

  • Slack JM, Holland PW, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz PR, Kostyuchenko RP, Fischer A, Arendt D (2011) The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii. Evol Dev 13:72–79

    Article  PubMed  Google Scholar 

  • Suda Y, Kurokawa D, Takeuchi M, Kajikawa E, Kuratani S, Amemiya C, Aizawa S (2009) Evolution of Otx paralogue usages in early patterning of the vertebrate head. Dev Biol 325:282–295

    Article  CAS  PubMed  Google Scholar 

  • Sugahara F, Aota S, Kuraku S, Murakami Y, Takio-Ogawa Y, Hirano S, Kuratani S (2011) Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate forebrain. Development 138:1217–1226

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Saitsu H, Shiota K, Ishibashi M (2008) Expression dynamics of the LIM-homeobox genes, Lhx1 and Lhx9, in the diencephalon during chick development. Int J Dev Biol 52:33–41

    Article  CAS  PubMed  Google Scholar 

  • Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R (2007) Hox gene expression patterns in Lethenteron japonicum embryos-Insights into the evolution of vertebrate Hox code. Dev Biol 308:606–620

    Article  CAS  PubMed  Google Scholar 

  • Tan JTY, Korzh V, Gong Z (1999) Expression of a zebrafish iroquois homeobox gene, Ziro3, in the midline axial structures and central nervous system. Mech Dev 87:165–168

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Münsterberg A, Anderson WG, Prescott AR, Hazon N, Tickle C (2002) Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature 416:527–531

    Article  CAS  PubMed  Google Scholar 

  • Tomsa JM, Langeland JA (1999) Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. Dev Biol 207:26–37

    Article  CAS  PubMed  Google Scholar 

  • Urbach R (2007) A procephalic territory in Drosophila exhibiting similarities and dissimilarities compared to the vertebrate midbrain/hindbrain boundary region. Neural Dev 2:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological histochemical and autoradiographic investigation. In: Brodal HOH et al (eds) Advances in anatomy, embryology and cell biology. Springer, Berlin, pp 5–21

    Google Scholar 

  • Vaage S (1973) The histogenesis of the isthmic nuclei in chick embryos (Gallus domesticus). Z Anat Entwicklungsgesch 142:283–314

    Article  CAS  PubMed  Google Scholar 

  • Villar-Cerviño V, Barreiro-Iglesias A, Rodicio MC, Anadón R (2010) D-serine is distributed in neurons in the brain of the sea lamprey. J Comp Neurol 518:1688–1710

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2008) Gene duplications, robustness and evolutionary innovations. BioEssays 30:367–373

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  CAS  PubMed  Google Scholar 

  • Waters ST, Lewandoski M (2006) A threshold requirement for Gbx2 levels in hindbrain development. Development 133:1991–2000

    Article  CAS  PubMed  Google Scholar 

  • Watson C, Paxinos G, Puelles L (2012) The mouse nervous system. Elsevier Academic Press, London

  • Wullimann MF, Mueller T, Distel M, Babaryka A, Grothe B, Köster RW (2011) The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Front Neuroanat 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Zervas M, Millet S, Ahn S, Joyner A (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Yu X, Ahlberg PE, Choo B, Lu J, Qiao T, Qu Q, Zhao W, Jia L, Blom H, Zhu Y (2013) A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188–193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. R. Anadón for the valuable comments made during the preparation of this paper and his critical reading of the manuscript. We also thank Dr. S. Ferreiro-Galve for her helpful support and contribution in some experimental procedures. This work was supported by grants from the Spanish Dirección General de Investigación-FEDER (BFU2010-15816), the Xunta de Galicia (10PXIB200051PR, CN 2012/237), and European Community-Research Infrastructure Action under the FP7 “Capacities” Specific Programme (ASSEMBLE 227799).

Conflict of interest

The authors declare that they have no conflict of interest

Ethical standard

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Rodríguez-Moldes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pose-Méndez, S., Candal, E., Mazan, S. et al. Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan–gnathostome transition. Brain Struct Funct 221, 1321–1335 (2016). https://doi.org/10.1007/s00429-014-0973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0973-8

Keywords

Navigation