Skip to main content
Log in

Identification of CNS neurons with polysynaptic connections to both the sympathetic and parasympathetic innervation of the submandibular gland

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Coordinated modulation of sympathetic and parasympathetic nervous activity is required for physiological regulation of tissue function. Anatomically, whilst the peripheral sympathetic and parasympathetic pathways are separate, the distribution of premotor neurons in higher brain regions often overlaps. This co-distribution would enable coordinated regulation and might suggest individual premotor neurons could project to both sympathetic and parasympathetic outflows. To investigate this one submandibular gland was sympathectomized. One of two isogenic strains of the pseudorabies virus, expressing different fluorophores, was injected into the cut sympathetic nerve and the other into the submandibular gland. Independent labeling of the peripheral sympathetic and parasympathetic pathways was observed. Dual-labeled neurons were observed in many CNS regions known to be involved in regulating salivary function. We propose these observations highlight a common pattern of organization of the CNS, providing the anatomical framework for the fine control of organ function required for homeostatic regulation and the coordination of organ responses to enable complex behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson LC, Garrett JR, Zhang X, Proctor GB, Shori DK (1995) Differential secretion of proteins by rat submandibular acini and granular ducts on graded autonomic nerve stimulations. J Physiol 485:503–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banfield BW, Kaufman JD, Randall JA, Pickard GE (2003) Development of pseudorabies virus strains expressing red fluorescent proteins: new tools for multisynaptic labeling applications. J Virol 77:10106–10112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buijs RM, Chun SJ, Niijima A, Romijn HJ, Nagai K (2001) Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 431:405–423

    Article  CAS  PubMed  Google Scholar 

  • Cano G, Sved AF, Rinaman L, Rabin BS, Card JP (2001) Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol 439:1–18

    Article  CAS  PubMed  Google Scholar 

  • Card JP, Enquist LW, Moore RY (1999) Neuroinvasiveness of pseudorabies virus injected intracerebrally is dependent on viral concentration and terminal field density. J Comp Neurol 407:438–452

    Article  CAS  PubMed  Google Scholar 

  • Cho YK, Li CS, Smith DV (2003) Descending influences from the lateral hypothalamus and amygdala converge onto medullary taste neurons. Chem Senses 28:155–171

    Article  CAS  PubMed  Google Scholar 

  • Edwards AV, Titchen DA (1992) Synergism in the autonomic regulation of parotid secretion of protein in sheep. J Physiol 451:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards AV, Titchen DA (2003) Autonomic control of protein production by the parotid gland of the sheep. Auton Neurosci 103:38–49

    Article  CAS  PubMed  Google Scholar 

  • Garrett JR (1987) The proper role of nerves in salivary secretion: a review. J Dent Res 66:387–397

    Article  CAS  PubMed  Google Scholar 

  • Geerling JC, Shin JW, Chimenti PC, Loewy AD (2010) Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol 518:1460–1499

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibbins H, Proctor G, Yakubov G, Wilson S, Carpenter G (2013) Concentration of salivary protective proteins within the bound oral mucosal pellicle. Oral diseases (in press)

  • Hubschle T, McKinley MJ, Oldfield BJ (1998) Efferent connections of the lamina terminalis, the preoptic area and the insular cortex to submandibular and sublingual gland of the rat traced with pseudorabies virus. Brain Res 806:219–231

    Article  CAS  PubMed  Google Scholar 

  • Jansen AS, Ter Horst GJ, Mettenleiter TC, Loewy AD (1992) CNS cell groups projecting to the submandibular parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res 572:253–260

    Article  CAS  PubMed  Google Scholar 

  • Jansen AS, Wessendorf MW, Loewy AD (1995a) Transneuronal labeling of CNS neuropeptide and monoamine neurons after pseudorabies virus injections into the stellate ganglion. Brain Res 683:1–24

    Article  CAS  PubMed  Google Scholar 

  • Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD (1995b) Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270:644–646

    Article  CAS  PubMed  Google Scholar 

  • Kalra SP, Dube MG, Sahu A, Phelps CP, Kalra PS (1991) Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc Natl Acad Sci USA 88:10931–10935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kampe J, Tschop MH, Hollis JH, Oldfield BJ (2009) An anatomic basis for the communication of hypothalamic, cortical and mesolimbic circuitry in the regulation of energy balance. Eur J Neurosci 30:415–430

    Article  CAS  PubMed  Google Scholar 

  • Kerman IA, Enquist LW, Watson SJ, Yates BJ (2003) Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J Neurosci 23:4657–4666

    CAS  PubMed  Google Scholar 

  • Kim JS, Enquist LW, Card JP (1999) Circuit-specific coinfection of neurons in the rat central nervous system with two pseudorabies virus recombinants. J Virol 73:9521–9531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW (2010) Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun 1:146

    Article  PubMed Central  PubMed  Google Scholar 

  • Koizumi K, Terui N, Kollai M, Brooks CM (1982) Functional significance of coactivation of vagal and sympathetic cardiac nerves. Proc Natl Acad Sci USA 79:2116–2120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krout KE, Mettenleiter TC, Loewy AD (2003) Single CNS neurons link both central motor and cardiosympathetic systems: a double-virus tracing study. Neuroscience 118:853–866

    Article  CAS  PubMed  Google Scholar 

  • Kupfermann I, Weiss KR (2001) Motor program selection in simple model systems. Curr Opin Neurobiol 11:673–677

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Martin CL, Marcus JN, Yanagisawa M, Minson JB, Scammell TE (2003) Orexin-immunoreactive inputs to rat sympathetic preganglionic neurons. Neurosci Lett 351:115–119

    Article  CAS  PubMed  Google Scholar 

  • Matsuo R, Garrett JR, Proctor GB, Carpenter GH (2000) Reflex secretion of proteins into submandibular saliva in conscious rats, before and after preganglionic sympathectomy. J Physiol 527:175–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci 16:74–104

    Article  CAS  Google Scholar 

  • Oldfield BJ, Allen AM, Davern P, Giles ME, Owens NC (2007) Lateral hypothalamic ‘command neurons’ with axonal projections to regions involved in both feeding and thermogenesis. Eur J Neurosci 25:2404–2412

    Article  CAS  PubMed  Google Scholar 

  • Paton JF, Boscan P, Pickering AE, Nalivaiko E (2005) The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Rev 49:555–565

    Article  CAS  PubMed  Google Scholar 

  • Paton JF, Nalivaiko E, Boscan P, Pickering AE (2006) Reflexly evoked coactivation of cardiac vagal and sympathetic motor outflows: observations and functional implications. Clin Exp Pharmacol Physiol 33:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, New York

  • Proctor GB, Carpenter GH (2007) Regulation of salivary gland function by autonomic nerves. Auton Neurosci 133:3–18

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L, Card JP, Enquist LW (1993) Spatiotemporal responses of astrocytes, ramified microglia, and brain macrophages to central neuronal infection with pseudorabies virus. J Neurosci 13:685–702

    CAS  PubMed  Google Scholar 

  • Sevigny CP, Bassi J, Teschemacher AG, Kim KS, Williams DA, Anderson CR, Allen AM (2008) C1 neurons in the rat rostral ventrolateral medulla differentially express vesicular monoamine transporter 2 in soma and axonal compartments. Eur J Neurosci 28:1536–1544

    Article  CAS  PubMed  Google Scholar 

  • Smith BN, Banfield BW, Smeraski CA, Wilcox CL, Dudek FE, Enquist LW, Pickard GE (2000) Pseudorabies virus expressing enhanced green fluorescent protein: a tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc Natl Acad Sci USA 97:9264–9269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strack AM, Sawyer WB, Platt KB, Loewy AD (1989a) CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res 491:274–296

    Article  CAS  PubMed  Google Scholar 

  • Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD (1989b) A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 491:156–162

    Article  CAS  PubMed  Google Scholar 

  • Travers SP, Travers JB (2007) Taste-evoked Fos expression in nitrergic neurons in the nucleus of the solitary tract and reticular formation of the rat. J Comp Neurol 500:746–760

    Article  CAS  PubMed  Google Scholar 

  • Travers JB, DiNardo LA, Karimnamazi H (2000) Medullary reticular formation activity during ingestion and rejection in the awake rat. Exp Brain Res Experimentelle Hirnforschung Experimentation cerebrale 130:78–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Australian National Health and Medical Research Council (#566536) and the Australian Research Council (DP1094301). BJO is currently supported by Australian National Health and Medical Research Council Fellowship 1003757 and MJMcK was supported by Australian National Health and Medical Research Council Fellowship 628657. NSH was the recipient of the Frederick Blake Shepherd postgraduate scholarship from the University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Allen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hettigoda, N.S., Fong, A.Y., Badoer, E. et al. Identification of CNS neurons with polysynaptic connections to both the sympathetic and parasympathetic innervation of the submandibular gland. Brain Struct Funct 220, 2103–2120 (2015). https://doi.org/10.1007/s00429-014-0781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0781-1

Keywords

Navigation