Brain Structure and Function

, Volume 220, Issue 1, pp 361–383

In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis

  • Nina Patzke
  • Muhammad A. Spocter
  • Karl Æ. Karlsson
  • Mads F. Bertelsen
  • Mark Haagensen
  • Richard Chawana
  • Sonja Streicher
  • Consolate Kaswera
  • Emmanuel Gilissen
  • Abdulaziz N. Alagaili
  • Osama B. Mohammed
  • Roger L. Reep
  • Nigel C. Bennett
  • Jerry M. Siegel
  • Amadi O. Ihunwo
  • Paul R. Manger
Original Article

Abstract

The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis.

Keywords

Adult hippocampal neurogenesis Hippocampus Doublecortin Memory Mammalia Cognition 

References

  1. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589–596PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alme CB, Buzzetti RA, Marrone DF, Leutgeb JK, Chawla MK, Schaner MJ, Bohanik JD, Khoboko T, Leutgeb S, Moser EI, Moser MB, McNaughton BL, Barnes CA (2010) Hippocampal granule cells opt for early retirement. Hippocampus 20:1109–1123PubMedCrossRefGoogle Scholar
  3. Alpár A, Kunzle H, Gartner U, Popkova Y, Bauer U, Grosche J, Reichenbach A, Hartig W (2010) Slow age-dependent decline of doublecortin expression and BrdU labeling in the forebrain from lesser hedgehog tenrecs. Brain Res 1330:9–19PubMedCrossRefGoogle Scholar
  4. Amrein I, Slomianka L (2010) A morphologically distinct granule cell type in the dentate gyrus of the red fox correlates with adult hippocampal neurogenesis. Brain Res 1328:12–24PubMedCrossRefGoogle Scholar
  5. Amrein I, Slomianka L, Poletaeva II, Bologova NV, Lipp HP (2004) Marked species and age-dependent differences in cell proliferation and neurogenesis in the hippocampus of wild-living rodents. Hippocampus 14:1000–1010PubMedCrossRefGoogle Scholar
  6. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2007) The hippocampus book. Oxford University Press, New YorkGoogle Scholar
  7. Barker JM, Wojtowicz JM, Boonstra R (2005) Where’s my dinner? Adult neurogenesis in free-living food-storing rodents. Genes Brain Behav 4:89–98PubMedCrossRefGoogle Scholar
  8. Baron G, Stephan H, Frahm HD (1996) Comparative neurobiology in chiroptera. Birkhauser Verlag, New YorkGoogle Scholar
  9. Bartkowska K, Djavadian RL, Taylor JR, Turlejski K (2008) Generation, recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla). Eur J Neurosci 27:1710–1721PubMedCrossRefGoogle Scholar
  10. Bartkowska K, Turlejski K, Grabiec M, Ghazaryan A, Yavruoyan E, Djavadian RL (2010) Adult neurogenesis in the hedgehog (Erinaceus concolor) and mole (Talpa europaea). Brain Behav Evol 76:128–143PubMedCrossRefGoogle Scholar
  11. Bayer SA (1980) Development of the hippocampal regions in the rat II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol 190:115–134PubMedCrossRefGoogle Scholar
  12. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedCrossRefGoogle Scholar
  13. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2008) Corrigendum. The delayed rise of present-day mammals. Nature 456:274CrossRefGoogle Scholar
  14. Bunk EC, Stelzer S, Hermann S, Schafers M, Schlatt S, Schwamborn JC (2011) Cellular organization of adult neurogenesis in the common marmoset. Aging Cell 10:28–38PubMedCrossRefGoogle Scholar
  15. Buzsáki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal–entorhinal system. Nat Neurosci 16:130–138PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chawana R, Patzke N, Kaswera C, Gilissen E, Ihunwo AO, Manger PR (2013) Adult neurogenesis in eight megachiropteran species. Neuroscience 244:159–172PubMedCrossRefGoogle Scholar
  17. Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213PubMedCentralPubMedCrossRefGoogle Scholar
  18. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14PubMedCrossRefGoogle Scholar
  19. Epp JR, Barker JM, Galea LA (2009) Running wild: neurogenesis in the hippocampus across the lifespan in wild and laboratory-bred Norway rats. Hippocampus 19:1040–1049PubMedCrossRefGoogle Scholar
  20. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordberg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  21. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  22. Filimonoff IN (1965) On the so-called rhinencephalon on the dolphin. J Hirnforsch 8:1–23Google Scholar
  23. Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584PubMedCrossRefGoogle Scholar
  24. Garland T, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364CrossRefGoogle Scholar
  25. Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32CrossRefGoogle Scholar
  26. Glezer II, Jacobs MS, Morgane PJ (1988) Implications of the “initial brain” concept for brain evolution in Cetacea. Behav Brain Sci 11:75–116CrossRefGoogle Scholar
  27. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498PubMedGoogle Scholar
  28. Gould E, Vail N, Wagers M, Gross CG (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA 98:10910–10917PubMedCentralPubMedCrossRefGoogle Scholar
  29. Guidi S, Ciani E, Severi S, Contestabile A, Bartesaghi R (2005) Postnatal neurogenesis in the dentate gyrus of the guinea pig. Hippocampus 15:285–301PubMedCrossRefGoogle Scholar
  30. Harman A, Meyer P, Ahmat A (2003) Neurogenesis in the hippocampus of an adult marsupial. Brain Behav Evol 62:1–12PubMedCrossRefGoogle Scholar
  31. Herman LM, Richards DG, Wolz JP (1984) Comprehension of sentences by bottlenose dolphins. Cognition 16:129–219PubMedCrossRefGoogle Scholar
  32. Hyams DG (2010) CurveExpert software. http://www.curveexpert.net. Accessed 15 Mar 2013
  33. Jaakkola K, Guarino E, Rodriguez M, Erb L, Trone M (2010) What do dolphins (Tursiops truncatus) understand about hidden objects? Anim Cogn 13:103–120PubMedCrossRefGoogle Scholar
  34. Jabès A, Lavenex PB, Amaral DG, Lavenex P (2010) Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. Eur J Neurosci 31:273–285PubMedCentralPubMedCrossRefGoogle Scholar
  35. Jacobs MS, Morgane PJ, McFarland WL (1971) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (Rhinencephalon) I. The paleocortex. J Comp Neurol 141:205–272PubMedCrossRefGoogle Scholar
  36. Jacobs MS, McFarland WL, Morgane PJ (1979) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (Rhinencephalon): the archicortex. Brain Res Bull 4(Suppl 1):1–108PubMedCrossRefGoogle Scholar
  37. Johnson KM, Boonstra R, Wojtowicz JM (2010) Hippocampal neurogenesis in food-storing red squirrels: the impact of age and spatial behavior. Genes Brain Behav 9:583–591PubMedGoogle Scholar
  38. Kempermann G (2012) New neurons for ‘survival of the fittest’. Nat Rev Neurosci 13:727–736PubMedGoogle Scholar
  39. Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011) Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS One 6:e25760PubMedCentralPubMedCrossRefGoogle Scholar
  40. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5:e8809PubMedCentralPubMedCrossRefGoogle Scholar
  41. Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT (2011) Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc Natl Acad Sci USA 108:10326–10331PubMedCentralPubMedCrossRefGoogle Scholar
  42. Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773PubMedCentralPubMedCrossRefGoogle Scholar
  43. Leuner B, Kozorovitsky Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA 104:17169–17173PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lyamin OI, Pryaslova J, Lance V, Siegel JM (2005) Continuous activity in cetaceans after birth. Nature 435:1177PubMedCrossRefGoogle Scholar
  45. Lyamin OI, Manger PR, Ridgway SH, Mukhametov LM, Siegel JM (2008) Cetacean sleep: an unusual form of mammalian sleep. Neurosci Biobehav Rev 32:1451–1484PubMedCrossRefGoogle Scholar
  46. Ma X, Hamadeh MJ, Christie BR, Foster JA, Tarnopolsky MA (2012) Impact of treadmill running and sex on hippocampal neurogenesis in the mouse model of amyotrophic lateral sclerosis. PLoS One 7:e36048PubMedCentralPubMedCrossRefGoogle Scholar
  47. Maddison WP, Maddison DR (2005) Mesquite: a modular system for evolutionary analysis version 1.06. http://mesquiteproject.org. Accessed 28 Feb 2013
  48. Manger PR (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev 81:293–338PubMedCrossRefGoogle Scholar
  49. Manger PR (2013) Questioning the interpretations of behavioural observations of cetaceans: is there really support for a special intellectual status for this mammalian order? Neuroscience 250:664–696PubMedCrossRefGoogle Scholar
  50. Manger PR, Fuxe K, Ridgway SH, Siegel JM (2004) The distribution and morphological characteristics of catecholamine cells in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Brain Behav Evol 64:42–60PubMedCrossRefGoogle Scholar
  51. Manger PR, Pillay P, Maseko BC, Bhagwandin A, Gravett N, Moon DJ, Jillani NE, Hemingway J (2009) Acquisition of brains from the African elephant (Loxodonta africana): perfusion-fixation and dissection. J Neurosci Methods 179:16–21PubMedCrossRefGoogle Scholar
  52. Manger PR, Hemingway J, Haagensen M, Gilissen E (2010) Cross-sectional area of the elephant corpus callosum: comparison to other eutherian mammals. Neuroscience 167:815–824PubMedCrossRefGoogle Scholar
  53. Manger PR, Prowse M, Haagensen M, Hemingway J (2012) Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals. J Comp Neurol 520:2430–2439PubMedCrossRefGoogle Scholar
  54. Marino L, Butti C, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McCowan B, Nimchinsky EA, Pack AA, Reidenberg JS, Reiss D, Rendell L, Uhen MD, van der Gutcht E, Whitehead H (2008) A claim in search of evidence: reply to Manger’s thermogenesis hypothesis of cetacean brain structure. Biol Rev 83:417–440PubMedGoogle Scholar
  55. McDonald HY, Wojtowicz JM (2005) Dynamics of neurogenesis in the dentate gyrus of adult rats. Neurosci Lett 385:70–75PubMedCrossRefGoogle Scholar
  56. Meerlo P, Mistlberger RE, Jacobs BL, Heller HC, McGinty D (2009) New neurons in the adult brain: the role of sleep and consequences of sleep loss. Sleep Med Rev 13:187–194PubMedCentralPubMedCrossRefGoogle Scholar
  57. Mitchell RW, Hoban E (2010) Does echolocation make understanding object permanence unnecessary? Failure to find object permanence understanding in dolphins and beluga whales. In: Dolins FL, Mitchell RW (eds) Spatial cognition, spatial perception. Mapping the self and space. Cambridge University Press, Cambridge, pp 258–280Google Scholar
  58. Montie EW, Schneider G, Ketten DR, Marino L, Touhey KE, Hahn ME (2008) Volumetric neuroimaging of the Atlantic white-sided dolphin (Lagenorhynchus acutus) brain from in situ magnetic resonance images. Anat Rec 291:263–282CrossRefGoogle Scholar
  59. Morgane PJ, Jacobs MS, McFarland WL (1980) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configurations of the telencephalon of the bottlenose dolphin with comparative observations in four other cetacean species. Brain Res Bull 5(Suppl. 3):1–107CrossRefGoogle Scholar
  60. Nikolskaya KA (2005) Evolutionary aspects of intellect in vertebrates: can intellect be a factor confining choice of the habitat? Invest Russ 8:1442–1500Google Scholar
  61. Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442CrossRefGoogle Scholar
  62. Patzke N, Olaleye O, Haagensen M, Hof PR, Ihunwo AO, Manger PR (2013a) Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus. Brain Struct Funct (in press)Google Scholar
  63. Patzke N, Kaswera C, Gilissen E, Ihunwo AO, Manger PR (2013b) Adult neurogenesis in a giant otter shrew (Potamogale velox). Neuroscience 238:270–279PubMedCrossRefGoogle Scholar
  64. Pilleri G, Gihr M (1970) The central nervous system of the Mysticete and Odontocete whales. In: Pilleri G (ed) Investigations on Cetacea, vol 2. Brain Anatomy Institute, Berne, pp 89–127Google Scholar
  65. Pirlot P, Nelson J (1978) Volumetric analyses of monotreme brains. In: Augee ML (ed) Monotreme biology. The Royal Zoological Society of New South Wales, Syndey, pp 171–180Google Scholar
  66. Quader S, Isvaran K, Hale RE, Miner BG, Seavy NE (2004) Nonlinear relationships and phylogenetically independent contrasts. J Evol Biol 17:709–715PubMedCrossRefGoogle Scholar
  67. Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246PubMedCrossRefGoogle Scholar
  68. Reep RL, Finlay BL, Darlington RB (2007) The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70PubMedCrossRefGoogle Scholar
  69. Reiss D, Marino L (2001) Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. Proc Natl Acad Sci USA 98:5937–5942PubMedCentralPubMedCrossRefGoogle Scholar
  70. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470PubMedCentralPubMedCrossRefGoogle Scholar
  71. Schusterman RJ, Kreiger K (1984) California sea lions are capable of semantic comprehension. Psychol Rec 34:3–23Google Scholar
  72. Schwerdtfeger WK, Oelschlager HA, Stephan H (1984) Quantitative neuroanatomy of the brain of the La Plata dolphin, Pontoporia blainvillei. Anat Embryol 170:11–19PubMedCrossRefGoogle Scholar
  73. Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2007) Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiol Learn Mem 88:249–259PubMedCentralPubMedCrossRefGoogle Scholar
  74. Spampanato J, Sullivan RK, Turpin FR, Bartlett PF, Sah P (2012) Properties of doublecortin expressing neurons in the adult mouse dentate gyrus. PLoS One 7:e41029PubMedCentralPubMedCrossRefGoogle Scholar
  75. Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29PubMedCrossRefGoogle Scholar
  76. Sweatt JD (2004) Hippocampal function in cognition. Psychopharmacology 174:99–110PubMedCrossRefGoogle Scholar
  77. Thompson DK (2012) Postnatal hippocampal growth in health and prematurity: modulation and implications. In: Preedy VR (ed) Handbook of growth and growth monitoring in health and disease. Springer, New York, pp 643–662CrossRefGoogle Scholar
  78. Treves A, Tashiro A, Witter MP, Moser EI (2008) What is the mammalian dentate gyrus good for? Neuroscience 154:1155–1172PubMedCrossRefGoogle Scholar
  79. Tronel S, Fabre A, Charrier V, Oliet SH, Gage FH, Abrous DN (2010) Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc Natl Acad Sci USA 107:7963–7969PubMedCentralPubMedCrossRefGoogle Scholar
  80. Zelikowsky M, Bissiere S, Hast TA, Bennett RZ, Abdipranoto A, Vissel B, Fanselow MS (2013) Prefrontal microcircuit underlies contextual learning after hippocampal loss. Proc Natl Acad Sci USA 110:9938–9943PubMedCentralPubMedCrossRefGoogle Scholar
  81. Zhu H, Wang ZY, Hansson HA (2003) Visualization of proliferating cells in the adult mammalian brain with the aid of ribonucleotide reductase. Brain Res 977:180–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nina Patzke
    • 1
  • Muhammad A. Spocter
    • 1
    • 2
  • Karl Æ. Karlsson
    • 3
  • Mads F. Bertelsen
    • 4
  • Mark Haagensen
    • 5
  • Richard Chawana
    • 1
  • Sonja Streicher
    • 6
  • Consolate Kaswera
    • 7
  • Emmanuel Gilissen
    • 8
    • 9
    • 10
  • Abdulaziz N. Alagaili
    • 11
  • Osama B. Mohammed
    • 11
  • Roger L. Reep
    • 12
  • Nigel C. Bennett
    • 6
    • 11
  • Jerry M. Siegel
    • 13
  • Amadi O. Ihunwo
    • 1
  • Paul R. Manger
    • 1
  1. 1.School of Anatomical SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of AnatomyDes Moines UniversityDes MoinesUSA
  3. 3.Biomedical EngineeringReykjavik UniversityReykjavikIceland
  4. 4.Centre for Zoo and Wild Animal HealthCopenhagen ZooFrederiksbergDenmark
  5. 5.Department of Radiology, Donald Gordon Medical CentreUniversity of the WitwatersrandJohannesburgSouth Africa
  6. 6.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  7. 7.Faculté des SciencesUniversity of KisanganiKisanganiDemocratic Republic of Congo
  8. 8.Department of African ZoologyRoyal Museum for Central AfricaTervurenBelgium
  9. 9.Laboratory of Histology and NeuropathologyUniversité libre de BruxellesBrusselsBelgium
  10. 10.Department of AnthropologyUniversity of ArkansasFayettevilleUSA
  11. 11.KSU Mammals Research Chair, Department of ZoologyKing Saud UniversityRiyadhSaudi Arabia
  12. 12.Department of Physiological SciencesUniversity of FloridaGainsvilleUSA
  13. 13.Neurobiology Research, 151A3, Department of Psychiatry, Brain Research InstituteUCLA School of Medicine, Sepulveda VA Medical CentreNorth HillsUSA

Personalised recommendations