Skip to main content
Log in

Quantitative neuroanatomy of the brain of the La Plata dolphin, Pontoporia blainvillei

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The brain of the La Plata dolphin, Pontoporia blainvillei, was studied with methods of quantitative morphology. The volumes and the progression indices of the main brain structures were determined and compared with corresponding data of other Cetacea, Insectivora and Primates.

In Pontoporia, encephalization and neocorticalization are clearly greater than in primitive (“basal”) Insectivora. The indices are in the lower part of the range for simian monkeys. The paleocortex is regressive in accordance with the total reduction of the olfactory bulb and olfactory tract. In contrast to the situation in primates, the septum, schizocortex and archicortex are not progressive in Pontoporia. The striatum and cerebellum are strongly progressive, corresponding to the efficiency and importance of the motor system in the three-dimensional habitat. The diencephalon, mesencephalon and medulla oblongata show considerable progression. Obviously, this is correlated with the extensive development of structures of the acoustic system.

The superficial correspondence of the brains of dolphins and primates in relative size and in the degree of gyrencephaly is rather a rough morphological convergence than a sign of functional equivalence. It is coupled to a strongly divergent development of the various functional systems in the two mammalian orders according to their specific evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baron G (1974) Differential phylogenetic development of the acoustic nuclei among Chiroptera. Brain Behav Evol 9:7–40

    Google Scholar 

  • Bauchot R (1978) Encephalization in vertebrates. Brain Behav Evol 15:1–18

    Google Scholar 

  • Bauchot R, Stephan H (1968) Etude des modifications encéphaliques observées chez les insectivores adaptés à la recherche de nourriture en milieu aquatique. Mammalia 32:228–275

    Google Scholar 

  • Chen P, Shao Z, Pilleri G (1980) Regression of the optic system in the Chang-jiang (Yangtze) finless porpoise (Neophocaena asiaeorientalis) as a result of lack of light. In: Pilleri G (ed) Investigations on Cetacea, Vol 11. Bern, pp 115–120

  • Dral ADG, Beumer L (1974) The anatomy of the eye of the ganges river dolphin Platanista gangetica (Roxburgh 1801). Z Säugetier 39:143–167

    Google Scholar 

  • Filimonoff IN (1965) On the so-called rhinencephalon in the dolphin. J Hirnforsch 8:1–23

    Google Scholar 

  • Frahm HD, Stephan H, Stephan M (1982) Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. J Hirnforsch 23:375–389

    Google Scholar 

  • Gihr M, Pilleri G, Zhou K (1979) Cephalization of the chinese river dolphin Lipotes vexillifer (Platanistoidea, Lipotidae). In: Pilleri G (ed) Investigations on Cetacea. Bern, Vol 10, pp 257–274

  • Gruenberger HB (1970) On the cerebral anatomy of the amazon dolphin, Inia geoffrensis. In: Pilleri G (ed) Investigations on Cetacea, Vol 2. Bern, pp 129–144

  • Jacobs MS, McFarland WL, Morgane PJ (1979) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon): The archicortex. Brain Res Bull 4, Suppl 1, pp 108

    Google Scholar 

  • Jansen J (1952) On the whale brain with special reference to the weight of the brain of the fin whale. Norsk Hvalf Tid 9:480–486

    Google Scholar 

  • Jansen J, Jansen JKS (1969) The nervous system of Cetacea. In: Andersen HT (ed) The biology of marine mammals. Academic Press New York-San Francisco-London, pp 175–252

    Google Scholar 

  • Japha A (1911) Die Haare der Waltiere. Zool Jahrb 32:1–42

    Google Scholar 

  • Kamiya T, Pirlot P (1980) Brain organization in Platanista gangetica. Sci Rep Whales Res Inst Tokyo 32:105–126

    Google Scholar 

  • Kellogg R (1928) The history of whales—their adaptation to life in the water. Q Rev Biol 3:29–76, 174–208

    Google Scholar 

  • Kraus C, Pilleri G (1969) Quantitative Untersuchungen über die Großhirnrinde der Cetaceen. In: Pilleri G (ed) Investigations on Cetacea, Vol 1, Bern, pp 127–150

  • Kruger L (1966) Specialized features of the Cetacean brain. In: Norris KS (ed) Whales, dolphins and porpoises. University of California Press Berkeley-Los Angeles, pp 232–254

    Google Scholar 

  • Kruska D (1980) Domestikationsbedingte Hirngrößenänderungen bei Säugetieren. Z Zool Syst 18:161–195

    Google Scholar 

  • Ladygina TF, Supin AY (1977) Localization of the projectional sensory areas in the cortex of the porpoise Tursiops truncatus. Zh Evol Biokhim Fiziol 13:712–718

    Google Scholar 

  • Ladygina TF, Supin AY (1978) On the homology of the different regions of the brain's cortex of Cetacea and other mammals. In: Sokolov VE (ed) Morskiye Mlekopitayushchiye Resul'taty i Metodi Issledovaniyii. Izdatel'stvo Nauka, Moscow, pp 55–65

    Google Scholar 

  • Ladygina TF, Mass AM, Supin AY (1978) Multiple sensory projections in the dolphin cerebral cortex. Zh Vyssh Nerv Deiat 28:1047–1053

    Google Scholar 

  • Layne JN, Caldwell DK (1964) Behavior of the amazon dolphin, Inia geoffrensis (Blainville), in captivity. Zoologica NY 49:81–111

    Google Scholar 

  • Lilly JC (1964) Animals in aquatic environments: Adaptation of mammals to the ocean. In: Handbook of physiology, chapt 46: Adaptation to the environment. American Physiological Society, Washington, pp 741–747

    Google Scholar 

  • Mangold-Wirz K (1966) Cerebralisation and Ontogenesemodus bei Eutherien. Acta Anat (Basel) 63:449–508

    Google Scholar 

  • Morgane PJ, Jacobs MS (1972) Comparative anatomy of the Cetacean nervous system. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press London-New York, pp 117–244

    Google Scholar 

  • Morgane PJ, Jacobs MS, McFarland WL (1980) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species. Brain Res Bull 5, Suppl 3:1–107

    Google Scholar 

  • Norris KS (1964) Some problems of echolocation in Cetaceans. In: Tavolga WN (ed) Marine bioacoustics. Pergamon Press Oxford, pp 317–336

    Google Scholar 

  • Oelschläger HA, Buhl EH (in press) Occurrence of an olfactory bulb in the early development of the harbor porpoise (Phocoena phocoena). In: Duncker H-R, Fleischer G (eds) Functional morphology of vertebrates. An International Symposium on Vertebrate Morphology, Gießen. Fischer Stuttgart

  • Pilleri G (1964) Morphologie des Gehirns des “Southern Right Whale”, Eubalaena australis Desmoulins 1822 (Cetacea, Mysticeti, Balaenidae). Acta Zool 46:245–272

    Google Scholar 

  • Pilleri G (1966) Über die Anatomie des Gehirns des Gangesdelphins Platanista gangetica. Rev Suisse Zool 73:113–118

    Google Scholar 

  • Pilleri G (1972) Cerebral anatomy of the Platanistidae (Platanista gangetica, Platanista indi, Pontoporia blainvillei, Inia geoffrensis). In: Pilleri G (ed) Investigations on Cetacea, Vol 4. Bern, pp 44–70

  • Pilleri G, Busnel RG (1969) Brain/body weight ratios in Delphinidae. Acta Anat (Basel) 73:92–97

    Google Scholar 

  • Pilleri G, Chen P (1982) The brain of the chinese finless porpoise Neophocaena asiaeorientalis (Pilleri & Gihr 1972): I. Macroscopic anatomy. In: Pilleri G (ed) Investigations on Cetacea, Vol 13. Bern, pp 27–32

  • Pilleri G, Gihr M (1968) On the brain of the amazon dolphin, Inia geoffrensis de Blainville 1817 (Cetacea, Susuidae). Experientia 24:932–933

    Google Scholar 

  • Pilleri G, Gihr M (1969a) Über adriatische Tursiops truncatus (Montagu 1821) und vergleichende Untersuchungen über mediterrane und atlantische Tümmler. In: Pilleri G (ed) Investigations on Cetacea, Vol 1. Bern, pp 66–73

  • Pilleri G, Gihr M (1969b) Zur Anatomie und Pathologie von Inia geoffrensis de Blainville 1817 (Cetacea, Susuidae) aus dem Beni, Bolivien. In: Pilleri G (ed) Investigations on Cetacea, Vol 1. Bern, pp 94–106

  • Pilleri G, Gihr M (1970a) Brain-body weight ratio of Platanista gangetica. In: Pilleri G (ed) Investigations on Cetacea, Vol 2. Bern, pp 79–82

  • Pilleri G, Gihr M (1970b) The central nervous system of the Mysticete and Odontocete whales. In: Pilleri G (ed) Investigations on Cetacea, Vol 2. Bern, pp 89–127

  • Pilleri G, Gihr M (1971) Brain-body weight ratio in Pontoporia blainvillei. In: Pilleri G (ed) Investigations on Cetacea, Vol 3, Part 1. Bern, pp 69–73

  • Pilleri G, Gihr M (1972) Contribution to the knowledge of the cetaceans of Pakistan with particular reference to the genera Neomeris, Sousa, Delphinus and Tursiops and description of a new chinese porpoise (Neomeris asiaeorientalis). In: Pilleri G (ed) Investigations on Cetacea, Vol 4. Bern, pp 107–162

  • Pilleri G, Gihr M (1976) On the embryology of Platanista gangetica. 1. Body proportions, external characteristics and radiological investigations. In: Pilleri G (ed) Investigations on Cetacea, Vol 7. Bern, pp 45–64

  • Pilleri G, Kraus C, Gihr M (1968) The structure of the cerebral cortex of the ganges dolphin Susu (Platanista) gangetica Lebeck 1801. Z Mikrosk Anat Forsch 79:373–388

    Google Scholar 

  • Pirlot P, Kamiya T (1975) Comparison of ontogenetic brain growth in marine and coastal dolphins. Growth 39:507–524

    Google Scholar 

  • Rice DW (1977) A list of the marine mammals of the world, third ed, NOAA Technical Report NMFS SSRF-771. United States Government Printing Office, Washington, III+15 pp

    Google Scholar 

  • Ridgway SH, Flanigan NJ, McCormick JG (1966) Brain-spinal cord ratios in porpoises: possible correlations with intelligence and ecology. Psychon Sci 6:491–492

    Google Scholar 

  • Starck D (1965) Die Neencephalisation (Die Evolution zum Menschenhirn). In: Heberer G (ed) Menschliche Abstammungslehre (Fortschritte der Anthropogenie 1863–1964). Fischer Stuttgart, pp 103–144

    Google Scholar 

  • Starck D (1975) Neenkephalisation. In: Kurth G, Eibl-Eibesfeldt I (eds) Hominisation und Verhalten. Fischer Stuttgart, pp 201–233

    Google Scholar 

  • Stephan H (1967) Zur Entwicklungshöhe der Insektivoren nach Merkmalen des Gehirns und die Definition der “Basalen Insektivoren”. Zool Anz 179:177–199

    Google Scholar 

  • Stephan H (1972) Evolution of primate brains: a comparative anatomical investigation. In: Tuttle R (ed) The functional and evolutionary biology of primates. Aldine/Atherton Chicago, pp 155–174

    Google Scholar 

  • Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen Vol 4 (Nervensystem), Part 9. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • Stephan H, Andy OJ (1964) Quantiative comparisons of brain structures from insectivores to primates. Am Zool 4:59–74

    Google Scholar 

  • Stephan H, Andy OJ (1969) Quantitative comparative neuroanatomy of primates: an attempt at a phylogenetic interpretation. In: Albertson PD, Krauss M (eds) Comparative and evolutionary aspects of the vertebrate central nervous system. Ann N Y Acad Sci 167: 370–387

  • Stephan H, Kuhn H-J (1982) The brain of Micropotamogale lamottei Heim de Balsac 1954. Z Säugetier 47:129–142

    Google Scholar 

  • Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol (Basel) 35:1–29

    Google Scholar 

  • Stone H, Rebert CS (1970) Observations on trigeminal olfactory interactions. Brain Res 21:138–142

    Google Scholar 

  • Supin AY, Mukhametov LM, Ladygina TF, Popov VV, Mass AM, Polyakova IG (1978) Electrophysiological studies of the dolphin's brain. In: Sokolov VE (ed) Izdatel'stvo Nauka, Moscow, pp 7–85

    Google Scholar 

  • Swanson LW, Teyler TJ, Thompson RF (1982) Hippocampal long-term potentiation: mechanisms and implications for memory. Neurosci Res Program Bull 20

  • Waller GNH (1982) Retinal ultrastructure of the amazon river dolphin (Inia geoffrensis). Aquat Mamm 9:17–28

    Google Scholar 

  • Warncke P (1908) Mitteilung neuer Gehirn-und Körpergewichtsbestimmungen bei Säugern, nebst Zusammenstellung der gesamten bisher beobachteten absoluten und relativen Gehirngewichte bei den verschiedenen Spezies. J Psych Neurol 13:355–403

    Google Scholar 

  • Weber M (1897) Vorstudien über das Hirngewicht der Säugetiere. Festschrift C Gegenbaur, Vol 3. Engelmann Leipzig, pp 104–123

    Google Scholar 

  • Zhou K, Pilleri G, Li Y (1979) Observations on the Baiji (Lipotes vexillifer) and the finless porpoise (Neophocaena asiaeorientalis) in the Changjiang (Yangtze) river between Nanjing and Taiyangzhou, with remarks on some physiological adaptations of the Baiji to its environment. In: Pilleri G (ed) Investigations on Cetacea, Vol 10. Bern, pp 109–120

  • Zvorykin VT (1963) Morphological substrate of ultrasonic and location properties in dolphin. Arch Anat Histol Embryol (Leningrad) 45:3–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwerdtfeger, W.K., Oelschläger, H.A. & Stephan, H. Quantitative neuroanatomy of the brain of the La Plata dolphin, Pontoporia blainvillei . Anat Embryol 170, 11–19 (1984). https://doi.org/10.1007/BF00319453

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319453

Key words

Navigation