Skip to main content
Log in

Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Osmotic stimulation (OS) of vasopressin (VP) neurons of the supraoptic nucleus (SON) promotes VP secretion and tyrosine hydroxylase (TH) expression in adult mammals. VP secretion is under a noradrenaline control, whereas the regulation of TH expression remains uncertain. This study was aimed to determine at what period of ontogenesis: (1) VP neurons begin to react to OS by modifying simultaneously VP and TH gene expression and synthesis, (2) the noradrenergic control of VP neurons is established. Rats on the 21st embryonic day (E), third postnatal day (P), P13 were salt loaded or salt loaded and treated with an antagonist (prazosin) or agonist (phenylephrine) of α1-adrenoreceptors. According to our immunocytochemical and in situ hybridization data, OS resulted in an increased amount of VP mRNA in each age group and of VP on E21 and P3. TH gene and synthesis was initially expressed under OS on P3. The number of TH-expressing neurons diminished by threefold in salt loaded rats from P3 to P13. OS combined with prazosin administration resulted in an increased level of VP mRNA on P3 and P13, but not on E21 suggesting the onset of the noradrenaline inhibitory control after birth. OS together with prazosin treatment stimulated TH expression on P3 and P13, whereas phenylephrine provided an opposite effect. Thus, VP neurons begin to react to OS by an increased VP synthesis at the end of fetal life and by the onset of TH expression shortly after birth; the expression of both substances appears to be under the inhibitory control of noradrenaline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

E:

Embryonic day

GL:

Gray level

IR:

Immunoreactive

OD:

Optical density

OS:

Osmotic stimulation

P:

Postnatal day

PBS:

Phosphate-buffered saline

SON:

Supraoptic nucleus

SSC:

Saline sodium citrate

TH:

Tyrosine hydroxylase

VP:

Vasopressin

References

  • Abramova M, Calas A, Thibault J, Ugrumov M (2000) Tyrosine hydroxylase in vasopressinergic axons of the pituitary posterior lobe of rats under salt loading as a manifestation of neurochemical plasticity. Neural Plast 7:179–191

    Article  CAS  PubMed  Google Scholar 

  • Abramova M, Marsais F, Calas A, Thibault J, Ugrumov M (2002) Dynamical study of tyrosine hydroxylase expression and its correlation with vasopressin turnover in the magnocellular neurons of the supraoptico-posthypophysial system under long-term salt loading of adult rats. Brain Res 925:67–75

    Article  CAS  PubMed  Google Scholar 

  • Arluison M, Dietl M, Thibault J (1984) Ultrastructural morphology of dopaminergic nerve terminals and synapses in the striatum of the rat using tyrosine hydroxylase immunocytochemistry: a topographical study. Brain Res Bull 13:269–285

    Article  CAS  PubMed  Google Scholar 

  • Armstrong WE, Gallagher MJ, Sladek CD (1986) Noradrenergic stimulation of supraoptic neuronal activity and vasopressin release in vitro: mediation by an alpha 1-receptor. Brain Res 365:192–197

    Article  CAS  PubMed  Google Scholar 

  • Beltramo M, Calas A, Chernigovskaya E, Borisova N, Polenova O, Tillet Y, Thibault J, Ugrumov M (1994) Postnatal development of the suprachiasmatic nucleus in the rat. Morpho-functional characteristics and time course of tyrosine hydroxylase immunopositive fibers. Neuroscience 63:603–610

    Article  CAS  PubMed  Google Scholar 

  • Beltramo M, Calas A, Chernigovskaya E, Thibault J, Ugrumov M (1997) Long lasting effect of catecholamine deficiency on the differentiating vasopressin neurons in the rat supraoptic nucleus. Neuroscience 79:555–561

    Article  CAS  PubMed  Google Scholar 

  • Boer GJ (1987) Development of vasopressin systems and their functions. In: Gash DM, Boer GJ (eds) Vasopressin; principles and properties. Plenum Press, New York, pp 117–174

    Google Scholar 

  • Boudaba C, Schrader LA, Tasker JG (1997) Physiological evidence for local excitatory synaptic circuits in the rat hypothalamus. J Neurophysiol 77:3396–3400

    CAS  PubMed  Google Scholar 

  • Boudaba C, Di S, Tasker JG (1999) Noradrenergic modulation of excitatory synaptic inputs to supraoptic and paraventricular magnocellular neurons in rat hypothalamic slices. Soc Neurosci 25:704

    Google Scholar 

  • Bourget P, Fernandez H, Edouard D, Lesne-Hulin A, Ribou F, Baton-Saint-Mleux C, Lelaidier C (1995) Disposition of a new rate-controlled formulation of prazosin in the treatment of hypertension during pregnancy: transplacental passage of prazosin. Eur J Drug Metab Pharmacokinet 20:233–241

    Article  CAS  PubMed  Google Scholar 

  • Brooks DP, Share L, Crofton JT (1986) Central adrenergic control of vasopressin release. Neuroendocrinology 42:416–420

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM (1992) The development of vasopressin and oxytocin systems in the brain. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy: ontogeny of transmitters and peptides in the CNS, vol 10. Elsevier, Amsterdam, pp 547–569

  • Castel M, Gainer H, Dellmann HD (1984) Neuronal secretory systems. Int Rev Cytol 8:303–459

    Article  Google Scholar 

  • Chevaleyre V, Moos FC, Desarménien MG (2001) Correlation between electrophysiological and morphological characteristics during maturation of rat supraoptic neurons. Eur J Neurosci 13:1136–1146

    Article  CAS  PubMed  Google Scholar 

  • Cunningham ET, Sawchenko PE (1991) Reflex control of magnocellular vasopressin and oxytocin secretion. Trends Neurosci 14:406–411

    Article  CAS  PubMed  Google Scholar 

  • Day TA, Randle JC, Renaud LP (1985) Opposing alpha- and beta-adrenergic mechanisms mediate dose-dependent actions of noradrenaline on supraoptic vasopressin neurones in vivo. Brain Res 358:171–179

    Article  CAS  PubMed  Google Scholar 

  • Dlouha H, Krecek J, Zicha J (1982) Postnatal development and diabetes insipidus in Brattleboro rats. Ann NY Acad Sci 394:10–20

    Article  CAS  PubMed  Google Scholar 

  • Ershov PV, Ugrumov MV, Calas A, Krieger M, Thibault J (2005) Degeneration of dopaminergic neurons triggers an expression of individual enzymes of dopamine synthesis in non-dopaminergic neurons of the arcuate nucleus in adult rats. J Chem Neuroanat 30:27–33

    Article  CAS  PubMed  Google Scholar 

  • Falke N (1991) Modulation of oxytocin and vasopressin release at the level of the neurohypophysis. Prog Neurobiol 36:465–484

    Article  CAS  PubMed  Google Scholar 

  • Fernandez E, Craviso GL (1999) Protein synthesis blockade differentially affects the degradation of constitutive and nicotinic receptor-induced tyrosine hydroxylase protein level in isolated bovine chromaffin cells. J Neurochem 73:169–178

    Article  CAS  PubMed  Google Scholar 

  • Goncharevskaya OA, Dlouha H (1975) The development of various generations of nephrons during postnatal ontogenesis in the rat. Anat Rec 182:367–375

    Article  CAS  PubMed  Google Scholar 

  • Greengrass P, Bremner P (1979) Binding characteristics of 3H-prazosin to rat brain α-adrenergic receptors. Eur J Pharmacol 55:323–326

    Article  CAS  PubMed  Google Scholar 

  • Guo T-Z, Tinklenberg J, Oliker R, Maze M (1991) Central α1-adrenoceptor stimulation functionally antagonizes the hypnotic response to dexmedetomidine, α2-adrenoceptor agonist. Anesthesiology 75:252–256

    Article  CAS  PubMed  Google Scholar 

  • Hatton GI (1990) Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol 34:437–504

    Article  CAS  PubMed  Google Scholar 

  • Jard S (1990) Vasopressin and oxytocin. In: Baulieu E-E, Kelly PA (eds) Hormones: from molecules to disease. Chapman and Hall, New York, pp 282–302

    Google Scholar 

  • Khachaturian H, Sladek JR (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry: III. Ontogeny of catecholamine varicosities and neurophysin neurons in the rat supraoptic and paraventricular nuclei. Peptides 1:77–95

    Article  CAS  PubMed  Google Scholar 

  • Kiss JZ, Mezey E (1986) Tyrosine hydroxylase in magnocellular neurosecretory neurons. Neuroendocrinology 43:519–525

    Article  CAS  PubMed  Google Scholar 

  • Kontostavlaki DP, Panayotacopoulou MT, Sluijs JA, Unmehopa UA, Huitinga I, Hol EM, Swaab DF (2006) Co-expression of tyrosine hydroxylase and GTP cyclohydrolase I in arginine vasopressin-synthesizing neurons of the human supraoptic nucleus demonstrated by laser microdissection and real-time PCR. Neuroendocrinology 84:86–395

    Article  Google Scholar 

  • Lanièce P, Le Hir H, Bodeau-Péan S, Charon Y, Valentin L, Thermes C, Mallet J, Dumas S (1996) A novel rat tyrosine hydroxylase mRNA species generated by alternative splicing. J Neurochem 66:1819–1825

    Article  PubMed  Google Scholar 

  • Legrand C, Maltier JP (1986) Evidence for a noradrenergic transmission in the control of parturition in the rat. J Reprod Fertil 76:415–424

    Article  CAS  PubMed  Google Scholar 

  • López-Sañudo S, Puebla L, Guijarro LG, Prieto JC, Arilla E (1995a) Alpha-2 adrenoceptors modulate the somatostatinergic system and G protein levels in the rat hippocampus. Neuropsychopharmacology 12:47–55

    Article  PubMed  Google Scholar 

  • López-Sañudo S, Rodriguez-Martin E, Martin-Espinosa A, Arilla E (1995b) Effect of phenylephrine and prazosin on the somatostatinergic system in the rat frontoparietal cortex. Peptides 16:1453–1459

    Article  PubMed  Google Scholar 

  • Marsais F, Calas A (1999) Ectopic expression of non-catecholaminergic tyrosine hydroxylase in rat hypothalamic magnocellular neurons. Neuroscience 94:151–161

    Article  CAS  PubMed  Google Scholar 

  • Mirochnik V, Bosler O, Tillet Y, Calas A, Ugrumov MV (2005) Long-lasting effects of serotonin deficiency on differentiating peptidergic neurons in the rat suprachiasmatic nucleus. Int J Dev Neurosci 23:85–91

    Article  CAS  PubMed  Google Scholar 

  • Oosterbaan HP, Swaab DF, Boer GJ (1985) Oxytocin and vasopressin in the rat do not readily pass from mother to the amniotic fluid in late pregnancy. J Dev Physiol 7:55–62

    CAS  PubMed  Google Scholar 

  • Ostrowski NL, Young WS III, Knepper MA, Lolait SJ (1993) Expression of vasopressin V1a and V1b receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology 133:1849–1859

    Article  CAS  PubMed  Google Scholar 

  • Panayotacopoulou MT, Malidelis Y, van Heerikhuize J, Unmehopa U, Swaab D (2005) Individual differences in the expression of tyrosine hydroxylase mRNA in neurosecretory neurons of the human paraventricular and supraoptic nuclei: positive correlation with vasopressin mRNA. Neuroendocrinology 81:329–338

    Article  CAS  PubMed  Google Scholar 

  • Pirnik Z, Kiss A (2005) Fos expression variances in mouse hypothalamus upon physical and osmotic stimuli: co-staining with vasopressin, oxytocin, and tyrosine hydroxylase. Brain Res Bull 65:423–431

    Article  CAS  PubMed  Google Scholar 

  • Pitzel L, Lein B, Scheffels F, König A (1982) Neurohypophysial hormone content and release in fetal and newborn-rats. Neuroendocrinol Lett 4:349–354

    CAS  Google Scholar 

  • Pohjavuori M, Fyhrquist F (1980) Hemodynamic significance of vasopressin in the newborn infant. J Pediatr 97:462–465

    Article  CAS  PubMed  Google Scholar 

  • Rajerison RM, Butlen D, Jard S (1976) Ontogenic development of antidiuretic hormone receptors in rat kidney: comparison of hormonal binding and adenylate cyclase activation. Mol Cell Endocrinol 4:271–285

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Uhl GR (1988) The vasopressin gene is expressed prior to stimulation in the supraoptic nuclei in fetal rats. Brain Res 456:392–396

    Article  CAS  PubMed  Google Scholar 

  • Schöler J, Sladek JR Jr (1981) Supraoptic nucleus of the Brattleboro rat has an altered afferent noradrenergic input. Science 214(4518):347–349

    Article  PubMed  Google Scholar 

  • Shioda S, Yada T, Muroya S, Takigawa M, Nakai Y (1997) Noradrenaline activates vasopressin neurons via alpha1-receptor-mediated Ca2+ signaling pathway. Neurosci Lett 226:210–212

    Article  CAS  PubMed  Google Scholar 

  • Shioda S, Iwase M, Homma I, Nakajo S, Nakaya K, Nakai Y (1998) Vasopressin neuron activation and Fos expression by stimulation of the caudal ventrolateral medulla. Brain Res Bull 45:443–450

    Article  CAS  PubMed  Google Scholar 

  • Siga E, Horster MF (1991) Regulation of osmotic water permeability during differentiation of inner medullary collecting duct. Am J Physiol 260(Pt 2):F710–F716

    CAS  PubMed  Google Scholar 

  • Sikora KC, Dellman H-D (1980) Pre- and postnatal synaptogenesis in the rat supraoptic nucleus. Peptides 1(Suppl 1):229–238

    Article  Google Scholar 

  • Silverman AJ, Goldstain R, Gadde CA (1980) The ontogenesis of neurophysin-containing neurons in the mouse hypothalamus. Peptides 1(Suppl 1):27–44

    Article  CAS  Google Scholar 

  • Sinding C, Robinson AG, Seif SM (1980a) Levels of neurohypophyseal peptides in the rat during the first month of life. II. Response to physiological stimuli. Endocrinology 107:755–760

    Article  CAS  Google Scholar 

  • Sinding C, Seif SM, Robinson AG (1980b) Levels of neurohypophyseal peptides in the rat during first month of life. I. Basal levels in plasma, pituitary, and hypothalamus. Endocrinology 107:749–754

    Article  CAS  PubMed  Google Scholar 

  • Sladek CD, Armstrong WE (1987) Effect of neurotransmitters and neuropeptides on vasopressin release. In: Gash DM, Boer GJ (eds) Vasopressin; principles and properties. Plenum Press, New York, pp 275–333

    Google Scholar 

  • Smolen AJ (1990) Image analytic techniques for quantification of immunohistochemical staining in the nervous system. In: Methods in neurosciences. Quantitative and qualitative microscopy. Academic Press, San Diego, pp 208–229

  • Trembleau A, Calas A, Fevre-Montange M (1988) Combination of immunocytochemistry and in situ hybridization with oligonucleotide probes to localize simultaneously vasopressin, oxytocin and their mRNAs in hypothalamic magnocellular neurons. Bull Assoc Anat 72:101–106

    Google Scholar 

  • Trembleau A, Ugrumov M, Roche D, Calas A (1995) Vasopressin and oxytocin gene expressions in intact rats and under the catecholamine deficiency during ontogenesis. Brain Res Bull 37:437–448

    Article  CAS  PubMed  Google Scholar 

  • Ugrumov MV (2002) Magnocellular vasopressin system in ontogenesis: development and regulation. Microsc Res Tech 56:164–171

    Article  CAS  PubMed  Google Scholar 

  • Ugrumov MV (2008) Brain neurons partly expressing monoaminergic phenotype: distribution, development, and functional significance in norm and pathology. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology, Vizi ES (vol. ed) Neurotransmitter systems. Springer, Heidelberg, pp 21–73

    Chapter  Google Scholar 

  • Ugrumov MV (2009) Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J Chem Neuroanat 38:241–256

    Article  CAS  PubMed  Google Scholar 

  • Ugrumov M, Melnikova V, Ershov P, Balan I, Calas A (2002) Tyrosine hydroxylase- and/or aromatic l-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance. Psychoneuroendocrinology 5:533–548

    Article  Google Scholar 

  • Ugrumov MV, Melnikova VI, Lavrentyeva AV, Kudrin VS, Rayevsky KS (2004) Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats. Neuroscience 124:629–635

    Article  CAS  PubMed  Google Scholar 

  • Vacher C-M, Frétier P, Créminon C, Calas A, Hardin-Pouzet H (2002) Activation by serotonin and noradrenaline of vasopressin and oxytocin expression in the mouse paraventricular and supraoptic nuclei. J Neuroscience 22:1513–1522

    CAS  Google Scholar 

  • Willoughby JO, Jervois PM, Menadue MF, Blessing WW (1987) Noradrenaline, by activation of alpha-1-adrenoceptors in the region of the supraoptic nucleus, causes secretion of vasopressin in the unanaesthetized rat. Neuroendocrinology 45:219–226

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Inenaga K, Kannan H (1987) Depolarizing effect of noradrenaline on neurons of the rat supraoptic nucleus in vitro. Brain Res 405:348–352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the following grants: Russian Foundation for Basic Research 08-04-01084a, Russian Foundation for Basic Research—oriented basic research 09-04-13851, Russian Foundation for Basic Research—Centre National de la Recherche Scientifique 07-04-92173, Russian Foundation for Humanities 09-06-00543a, Scientific Schools 2110.2008.4, Programs of the Russian Academy of Sciences “Basic Sciences for Medicine”, “Physiological mechanisms of the regulation of homeostasis in the systemic control of the animal behavior” and “The innovations support”, French Ministry of National Education and Science: Program for training of Russian PhD students under co-supervision. Antibodies to TH were kindly provided as a gift by Prof. J. Thibault.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ugrumov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramova, M.A., Calas, A. & Ugrumov, M. Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation. Brain Struct Funct 215, 195–207 (2011). https://doi.org/10.1007/s00429-010-0290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-010-0290-9

Keywords

Navigation