Skip to main content
Log in

Plasticity of central and peripheral sources of noradrenaline in rats during ontogenesis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The morphogenesis of individual organs and the whole organism occurs under the control of intercellular chemical signals mainly during the perinatal period of ontogenesis in rodents. In this study, we tested our hypothesis that the biologically active concentration of noradrenaline (NA) in blood in perinatal ontogenesis of rats is maintained due to humoral interaction between its central and peripheral sources based on their plasticity. As one of the mechanisms of plasticity, we examined changes in the secretory activity (spontaneous and stimulated release of NA) of NA-producing organs under deficiency of its synthesis in the brain. The destruction of NA-ergic neurons was provoked by administration of a hybrid molecular complex–antibodies against dopamine-β-hydroxylase associated with the cytotoxin saporin–into the lateral cerebral ventricles of neonatal rats. We found that 72 h after the inhibition of NA synthesis in the brain, its spontaneous release from hypothalamus increased, which was most likely due to a compensatory increase of NA secretion from surviving neurons and can be considered as one of the mechanisms of neuroplasticity aimed at the maintenance of its physiological concentration in peripheral blood. Noradrenaline secretion from peripheral sources (adrenal glands and the organ of Zuckerkandl) also showed a compensatory increase in this model. Thus, during the critical period of morphogenesis, the brain is integrated into the system of NA-producing organs and participates in their reciprocal humoral regulation as manifested in compensatory enhancement of NA secretion in each of the studied sources of NA under specific inhibition of NA production in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

anti-DBH–saporin:

anti-dopamine-β-hydroxylase–saporin complex

BBB:

blood–brain barrier

DBH:

dopamine-β-hydroxylase

HPLC-ED:

high performance liquid chromatography with electrochemical detection

LC:

locus coeruleus

NA:

noradrenaline

OZ:

organ of Zuckerkandl

References

  1. Berger-Sweeney, J., and Hohmann, C. F. (1997) Behavioral consequences of abnormal cortical development: insights into developmental disabilities, Behav. Brain Res., 86, 121–142.

    Article  CAS  PubMed  Google Scholar 

  2. Kreider, M. L., Seidler, F. J., Cousins, M., Tate, C. A., and Slotkin, T. A. (2004) Transiently overexpressed a2-adrenoceptors and their control of DNA synthesis in the developing brain, Dev. Brain Res., 152, 233–239.

    Article  CAS  Google Scholar 

  3. Hildreth, V., Anderson, R. H., and Henderson, D. J. (2009) Autonomic innervation of the developing heart: origins and function, Clin. Anat., 22, 36–46.

    Article  PubMed  Google Scholar 

  4. Viemari, J. C., Bevengut, M., Burnet, H., Coulon, P., Pequignot, J. M., Tiveron, M. C., and Hilaire, G. (2004) Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice, J. Neurosci., 24, 928–937.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas, S. A., Matsumoto, A. M., and Palmiter, R. D. (1995) Noradrenaline is essential for mouse fetal development, Nature, 374, 643–646.

    Article  CAS  PubMed  Google Scholar 

  6. Tischler, A. S. (1989) The rat adrenal medulla, Toxicol. Pathol., 17, 330–332.

    Article  CAS  PubMed  Google Scholar 

  7. Ugrumov, M. V. (1999) Mechanisms of Endocrine Regulation [in Russian], Nauka, Moscow.

    Google Scholar 

  8. Huber, K., Kalcheim, C., and Unsicker, K. (2009) The development of the chromaffin cell lineage from the neural crest, Auton. Neurosci., 151, 10–16.

    Article  CAS  PubMed  Google Scholar 

  9. Kostrzewa, R. M. (2007) The blood-brain barrier for catecholamines–revisited, Neurotox. Res., 11, 261–271.

    Article  CAS  PubMed  Google Scholar 

  10. Zubova, Yu. O., Bondarenko, N. S., Sapronova, A. Ya., and Ugrumov, M. V. (2015) Noradrenaline secretion from the brain into the general circulatory system during the ontogenesis in rats, Neirokhimiya, 32, 116–122.

    Google Scholar 

  11. Zubova, Yu. O., Bondarenko, N. S., Sapronova, A. Ya., and Ugrumov, M. V. (2015) Simulation of chronic selective shutdown of noradrenaline synthesis in the brain of neonatal rats, Dokl. Akad. Nauk, 461, 608–611.

    Google Scholar 

  12. Verhofstad, A. A. J., Hokfelt, T., Goldstein, M., Steinbusch, H. W. M., and Joosten, H. W. J. (1979) Appearance of tyrosine hydroxylase, aromatic amino-acid decarboxylase, dopamine ß-hydroxylase and phenylethanolamine N-methyltransferase during the ontogenesis of the adrenal medulla, Cell Tissue Res., 200, 1–13.

    Article  CAS  PubMed  Google Scholar 

  13. Schober, A., Parlato, R., Huber, K., Kinscherf, R., Hartleben, B., Huber, T. B., Schutz, G., and Unsicker, K. (2013) Cell loss and autophagy in the extra adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signaling, J. Neuroendocrinol., 25, 34–47.

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein, D. S., Eisenhofer, G., and Kopin, I. J. (2003) Sources and significance of plasma levels of catechols and their metabolites in humans, J. Pharm. Exp. Ther., 305, 800–811.

    Article  CAS  Google Scholar 

  15. Thomas, G. B., Cummins, J. T., Smythe, G., Gleeson, R. M., Dow, R. C., Fink, G., and Clarke, I. J. (1989) Concentrations of dopamine and noradrenaline in hypophysial portal blood in the sheep and the rat, J. Endocrinol., 121, 141–147.

    Article  CAS  PubMed  Google Scholar 

  16. Fujinaga, M., and Scott, J. C. (1997) Gene expreßsion of catecholamine synthesizing enzymes and ß-adrenoceptor subtypes during rat embryogenesis, Neurosci. Lett., 231, 108–112.

    Article  CAS  PubMed  Google Scholar 

  17. Coradazzi, M., Gulino, R., Garozzo, S., and Leanza, G. (2010) Selective lesion of the developing central noradrenergic system: shortand long-term effects and reinnervation by noradrenergic-rich tissue grafts, J. Neurochem., 114, 761–771.

    Article  CAS  PubMed  Google Scholar 

  18. Wiley, R., and Kline, R. (2000) Neuronal lesioning with axonally transported toxins, Neurosci. Methods, 103, 73–82.

    Article  CAS  Google Scholar 

  19. Ashwell, K. W. S., and Paxinos, G. (2008) Atlas of the Developing Rat Nervous System, Vol. 3, Elsevier Academic Press, San Diego.

    Google Scholar 

  20. Khazipov, R., Zaynutdinova, D., Ogievetsky, E., Valeeva, G., Mitrukhina, O., Manent, J. B., and Represa, A. (2015) Atlas of the postnatal rat brain in stereotaxic coordinates, Front. Neuroanat., 9, 161.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nikishina, Yu. O., Murtazina, A. R., Sapronova, A. Ya., Melnikova, V. I., Bondarenko, N. S., and Ugryumov, M. V. (2016) Reciprocal humeral regulation of endocrine sources of noradrenaline in the perinatal period of development in rats, Ontogenez, 47, 287–295.

    Google Scholar 

  22. Ugrumov, M. V. (2010) Developing brain as an endocrine organ: a paradoxical reality, Neurochem. Res., 35, 837–850.

    Article  CAS  PubMed  Google Scholar 

  23. Wrenn, C. C., Picklo, M. J., Lappi, D. A., Robertson, D., and Wiley, R. G. (1996) Central noradrenergic lesioning using anti-DBH–saporin: anatomical findings, Brain Res., 740, 175–184.

    Article  CAS  PubMed  Google Scholar 

  24. Rizzoli, S. O., and Betz, W. J. (2005) Synaptic vesicle pools, Nat. Rev. Neurosci., 6, 57–69.

    Article  CAS  PubMed  Google Scholar 

  25. Bondarenko, N. S., Murtazina, A. R., Dilmukhametova, L. K., Ikonopistseva, M. A., Volina, E. V., and Ugrumov, M. V. (2016) Secretory activity of the brain and peripheral organs: spontaneous and stimulated secretion of noradrenaline during the ontogenesis in rats, Dokl. Akad. Nauk, 467, 1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Murtazina.

Additional information

Original Russian Text © N. S. Bondarenko, L. K. Dilmukhametova, A. Yu. Kurina, A. R. Murtazina, A. Ya. Sapronova, A. P. Sysoeva, M. V. Ugrumov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 3, pp. 519-527.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, N.S., Dilmukhametova, L.K., Kurina, A.Y. et al. Plasticity of central and peripheral sources of noradrenaline in rats during ontogenesis. Biochemistry Moscow 82, 373–379 (2017). https://doi.org/10.1134/S0006297917030166

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917030166

Keywords

Navigation