Skip to main content
Log in

Mechanisms of lineage segregation in the avian dermomyotome

  • Review
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The somite and its intermediate derivatives, sclerotome and dermomyotome (DM), are composed of distinct subdomains based on lineage analysis and gene expression patterns. This sets the grounds for elucidating the mechanisms underlying differential cell specification and morphogenesis. By examining the in vivo roles of N-cadherin on discrete domains of the somitic epithelium at various times, our recent studies highlight the existence of a regional and temporal heterogeneity in cellular responsiveness. As examples of this assortment, we document a coupling between asymmetric cell division and fate segregation in the DM sheet, sequential effects of N-cadherin-mediated adhesion on early myogenic specification compared to later myofiber patterning, and a differential behavior of pioneer myoblasts compared to later myogenic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132:689–701

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kahane N, Kalcheim C (2003) Coherent development of dermomyotome and dermis from the entire mediolateral extent of the dorsal somite. Development 130:4325–4336

    Article  PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Christ B (2002) Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 48:1–42

    Article  Google Scholar 

  • Brent AE, Tabin CJ (2002) Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev 12:548–557

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian sclerotome. Anat Embryol (Berl) 208:333–350

    Google Scholar 

  • Cinnamon Y, Kahane N, Kalcheim C (1999) Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Development 126:4305–4315

    PubMed  CAS  Google Scholar 

  • Cinnamon Y, Kahane N, Bachelet I, Kalcheim C (2001) The sub-lip domain—a distinct pathway for myotome precursors that demonstrate rostral-caudal migration. Development 128:341–351

    PubMed  CAS  Google Scholar 

  • Cinnamon Y, Ben-Yair R, Kalcheim C (2006) Differential effects of N-cadherin-mediated adhesion on the development of myotomal waves. Development 133:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Cole F, Zhang W, Geyra A, Kang JS, Krauss RS (2004) Positive regulation of myogenic bHLH factors and skeletal muscle development by the cell surface receptor CDO. Dev Cell 7:843–854

    Article  PubMed  CAS  Google Scholar 

  • Cortes F, Daggett D, Bryson-Richardson RJ, Neyt C, Maule J, Gautier P, Hollway GE, Keenan D, Currie PD (2003) Cadherin-mediated differential cell adhesion controls slow muscle cell migration in the developing zebrafish myotome. Dev Cell 5:865–876

    Article  PubMed  CAS  Google Scholar 

  • Duband JL, Dufour S, Hatta K, Takeichi M, Edelman GM, Thiery JP (1987) Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 104:1361–1374

    Article  PubMed  CAS  Google Scholar 

  • Duband JL, Volberg T, Sabanay I, Thiery JP, Geiger B (1988) Spatial and temporal distribution of the adherens-junction-associated adhesion molecule A-CAM during avian embryogenesis. Development 103:325–344

    PubMed  CAS  Google Scholar 

  • George-Weinstein M, Gerhart J, Blitz J, Simak E, Knudsen KA (1997) N-cadherin promotes the commitment and differentiation of skeletal muscle precursor cells. Dev Biol 185:14–24

    Article  PubMed  CAS  Google Scholar 

  • Goichberg P, Geiger B (1998) Direct involvement of N-cadherin-mediated signaling in muscle differentiation. Mol Biol Cell 9:3119–3131

    PubMed  CAS  Google Scholar 

  • Gros J, Scaal M, Marcelle C (2004) A two-step mechanism for myotome formation in chick. Dev Cell 6:875–882

    Article  PubMed  CAS  Google Scholar 

  • Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner BM (2000) Regulation of cadherin adhesive activity. J Cell Biol 148:399–404

    Article  PubMed  CAS  Google Scholar 

  • Holt CE, Lemaire P, Gurdon JB (1994) Cadherin-mediated cell interactions are necessary for the activation of MyoD in Xenopus mesoderm. Proc Natl Acad Sci USA 91:10844–10848

    Article  PubMed  CAS  Google Scholar 

  • Horikawa K, Takeichi M (2001) Requirement of the juxtamembrane domain of the cadherin cytoplasmic tail for morphogenetic cell rearrangement during myotome development. J Cell Biol 155:1297–1306

    Article  PubMed  CAS  Google Scholar 

  • Horikawa K, Radice G, Takeichi M, Chisaka O (1999) Adhesive subdivisions intrinsic to the epithelial somites. Dev Biol 215:182–189

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Christ B (2000) Origin of the epaxial and hypaxial myotome in avian embryos. Anat Embryol (Berl) 202:369–374

    Article  CAS  Google Scholar 

  • Huang RJ, Zhi QX, Patel K, Wilting J, Christ B (2000) Dual origin and segmental organisation of the avian scapula. Development 127:3789–3794

    PubMed  CAS  Google Scholar 

  • Kaehn K, Jacob HJ, Christ B, Hinrichsen K, Poelmann RE (1988) The onset of myotome formation in the chick. Anat Embryol 177:191–201

    Article  PubMed  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (1998a) The cellular mechanism by which the dermomyotome contributes to the second wave of myotome development. Development 125:4259–4271

    CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (1998b) The origin and fate of pioneer myotomal cells in the avian embryo. Mech Dev 74:59–73

    Article  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Bachelet I, Kalcheim C (2001) The third wave of myotome colonization by mitotically competent progenitors: regulating the balance between differentiation and proliferation during muscle development. Development 128:2187–2198

    PubMed  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (2002) The roles of cell migration and myofiber intercalation in patterning formation of the postmitotic myotome. Development 129:2675–2287

    PubMed  CAS  Google Scholar 

  • Kalcheim C, Ben-Yair R (2005) Cell rearrangements during development of the somite and its derivatives. Curr Opin Genet Dev 15:1–10

    Article  Google Scholar 

  • Kalcheim C, Cinnamon Y, Kahane N (1999) Myotome formation: a multistage process. Cell Tissue Res 296:161–173

    Article  PubMed  CAS  Google Scholar 

  • Kassar-Duchosoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–1431

    Article  Google Scholar 

  • Knudsen KA, Myers L, McElwee SA (1990) A role for the Ca2(+)-dependent adhesion molecule, N-cadherin, in myoblast interaction during myogenesis. Exp Cell Res 188:175–184

    Article  PubMed  CAS  Google Scholar 

  • Krauss RS, Cole F, Gaio U, Takaesu G, Zhang W, Kang JS (2005) Close encounters: regulation of vertebrate skeletal myogenesis by cell–cell contact. J Cell Sci 118:2355–2362

    Article  PubMed  CAS  Google Scholar 

  • Linask KK, Ludwig C, Han MD, Liu X, Radice GL, Knudsen KA (1998) N-cadherin/catenin-mediated morphoregulation of somite formation. Dev Biol 202:85–102

    Article  PubMed  CAS  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487

    Article  PubMed  CAS  Google Scholar 

  • Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181:64–78

    Article  PubMed  CAS  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    Article  PubMed  CAS  Google Scholar 

  • Scaal M, Christ B (2004) Formation and differentiation of the avian dermomyotome. Anat Embryol (Berl) 208:411–424

    Google Scholar 

Download references

Acknowledgments

We thank M. Takeichi for the N-cadherin DNAs and D. Duprez for MyoD. This work was supported by grants from the Israel Science Foundation, the EEU 6th Framework program Network of Excellence MYORES, the March of Dimes and DFG (SFB 488) to C.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaya Kalcheim.

Additional information

Yuval Cinnamon and Raz Ben-Yair have equally contributed data presented in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalcheim, C., Kahane, N., Cinnamon, Y. et al. Mechanisms of lineage segregation in the avian dermomyotome. Brain Struct Funct 211 (Suppl 1), 31–36 (2006). https://doi.org/10.1007/s00429-006-0116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0116-y

Keywords

Navigation