Skip to main content
Log in

Delayed postnatal settlement of cerebellar Purkinje cells in vermal lobules VI and VII of the mouse

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The postnatal development of the ganglionic (Purkinje) layer was studied in the mouse cerebellum from P0 to young adulthood with special emphasis to vermal lobules VI–VII (oculomotor vermis) in the mouse. In order to visualize Purkinje cells (PCs), toluidine blue staining of resin-embedded semithin sections and calbindin immunohistochemistry were utilized. The number of PCs in the whole cerebellum was 199,080±2966 at postnatal day eight (P8), 222,000±2979 at P20 and nearly the same, 225,800±7549 in young adults; i.e., there was an approximately 13.4% increase of PCs between P8 and adults. The number of PC somata aligned into a rostrocaudal stripe along the developing ganglionic layer increased by about 24% in vermal cerebellar lobule III but much more markedly (i.e., by 49%) in VI+VII between P6 and young adulthood. Between P6 and P16, the increase of the number of PCs in the ganglionic layer of lobules VI and VII resulted in the (delayed) completion of PC layer, caused by the (late) alignment of rostrocaudally dispersed PCs, although late postnatal migration of a smaller population of these cells cannot be excluded either. It is concluded that the oculomotor vermis belongs to the latest developing cerebellar cortical structures, which could be the reason for its frequent involvement in developmentally related disturbances and disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a,b
Fig. 4a,b
Fig. 5a–c
Fig. 6a–c
Fig. 7a,b
Fig. 8a–g

Similar content being viewed by others

References

  • Akintunde A, Eisenman LM (1994) External cuneocerebellar projection and Purkinje cell zebrin II bands: a direct comparison of parasagittal banding in the mouse cerebellum. J Chem Neuroanat 7:75–86

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1972) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–464

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration and settling of Purkinje cells. J Comp Neurol 231:42–65

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system in relation to its evolution, structure and functions. CRC Press, Boca Raton

    Google Scholar 

  • Altman J, Winfree AT (1977) Postnatal development of the cerebellar cortex of rat. V. Spatial organization of Purkinje cell perikarya. J Comp Neurol 171:1–16

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrrow derived cells with Purkinje neurons, ccardiomyocytes and hepatocytes. Nature 425:968–973

    Article  CAS  PubMed  Google Scholar 

  • Armstrong C, Hawkes R (2000) Selective Purkinje cell ectopia in the cerebellum of the weaver mouse. J Comp Neurol 439:151–161

    Article  Google Scholar 

  • Bauman ML, Kempler TL (1994) Neuroanatomic observations of the brain in autism. In: Bauman ML, Kempler TL (eds) The neurobiology of autism. Johns Hopkins University Press, Baltimore, pp 119–145

    Google Scholar 

  • Beierbach E, Park C, Ackerman SL, Goldowitz D, Hawkes R (2001) Abnormal dispersion of a Purkinje cell subset in the mouse mutant erebellar deficient folia (cdf). J Comp Neurol 436:42–51

    Article  CAS  PubMed  Google Scholar 

  • Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, Castellanos FX (1998) Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 50:1087–1093

    CAS  PubMed  Google Scholar 

  • Beyerl BD, Borges LF, Swearingen B, Sidman RL (1988) Parasagittal organization of the olivocerebellar projection in the mouse. J Comp Neurol 209:339–346

    Article  Google Scholar 

  • Blatt GJ, Eisenman LM (1985) A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 232:117–128

    Article  CAS  PubMed  Google Scholar 

  • Blatt GJ, Eisenman LM (1993) The olivocerebellar projection in normal (+/+), heterozygous weaver (wv/+), and homozygous waver (wv/wv) mutant mice: comparison of terminal pattern and topographic organization. Exp Brain Res 95:187–201

    Article  CAS  PubMed  Google Scholar 

  • Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear projections in the rat. Prog Neurobiol 40:63–87

    Article  CAS  PubMed  Google Scholar 

  • Buser P, Rougeol A (1954) La résponse électrique du cervelet de Pigeon á la stimulation de la voie optique et son analyse par microélectrodes. J Physiol-Paris 46:287–291

    CAS  PubMed  Google Scholar 

  • Caddy KWT, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B 287:167–201

    CAS  Google Scholar 

  • De Camilli P, Miller PE, Levitt P, Walter U, Greengard P (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience 11:761–817

    Article  CAS  PubMed  Google Scholar 

  • Diglio T, Herrup K (1982) A significant fraction of the adult number of mature cerebellar Purkinje cells first appears between postnatal days 16 and 30. Soc Neurosci Abstr 8:636

    Google Scholar 

  • Dorph-Petersen KA, Nyengaard JR, Gundersen HJG (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204:232–246

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  • Eisenman LM, Gallagher E, Hawkes R (1998) Regionalization defects in the weaver mouse cerebellum. J Comp Neurol 394:431–444

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Favero M, Vogel MW (2001) Elimination of Bax expression in mice increases cerebellar Purkinje cell numbers but not the number of granule cells. J Comp Neurol 436:82–91

    Article  CAS  PubMed  Google Scholar 

  • Fujita S (1967) Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J Cell Biol 32:277–287

    Article  CAS  PubMed  Google Scholar 

  • Fujita S, Shimada M, Nakamura T (1966) 3 H-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and internal granular layer of the mouse cerebellum. J Comp Neurol 128:191–208

    Article  CAS  PubMed  Google Scholar 

  • Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382

    Article  CAS  PubMed  Google Scholar 

  • Goodlett CR, Hamre KM, West JR (1990) Regional differences in the timing of dendritic outgrowth of Purkinje cells in the vermal cerebellum demonstrated by MAP2 immunocytochemistry. Dev Brain Res 53:131–134

    Article  CAS  Google Scholar 

  • Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–223

    Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    Article  CAS  PubMed  Google Scholar 

  • Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 18:385–408

    CAS  PubMed  Google Scholar 

  • Hatten ME, Alder J, Zimmerman K, Heintz N (1997) Genes involved in cerebellar cell specification and differentation. Curr Opin Neurobiol 7:40–47

    Article  CAS  PubMed  Google Scholar 

  • Hawkes R (1997) An anatomical model of cerebellar modules. Prog Brain Res 114:39–52

    CAS  PubMed  Google Scholar 

  • Hawkes R, Eisenman LM (1997) Stripes and zones: the origins of regionalization of the adult cerebellum. Perspect Dev Neurobiol 5:95–105

    CAS  PubMed  Google Scholar 

  • Hayakawa Y, Nakajima T, Takagi M, Fukuhara N, Abe H (2002) Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophtalmologica 216:399–405

    Article  Google Scholar 

  • Herrup K, Kuemberle B (1997) The compartmentalization of the cerebellum. Annu Rev Neurosci 20:61–90

    Article  CAS  PubMed  Google Scholar 

  • Herrup K, Trenkner E (1987) Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neuroscience 23:871–885

    Article  CAS  PubMed  Google Scholar 

  • Jande SS, Maler L, Lawson DEM (1981) Immunohistochemical mapping of vitamin-d-dependent calcium-binding protein in brain. Nature 294:765–767

    Article  CAS  PubMed  Google Scholar 

  • Larsen JO, Skalicky M, Viidik A (2000) Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol 428:213–222

    Article  CAS  PubMed  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    Article  CAS  PubMed  Google Scholar 

  • Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL et al (1998) Decreased cerebellar posterior vermis size in fragile-X syndrome: correlation with neurocognitive performance. Neurology 50:121–130

    CAS  PubMed  Google Scholar 

  • Noda H (1991) Cerebellar control of saccadic eye-movements—its neural mechanisms and pathways. Jpn J Physiol 41:351–368

    Article  CAS  PubMed  Google Scholar 

  • Nunzi MG, Grillo M, Margolis FL, Mugnaini E (1999) Compartmental organization of Purkinje cells in the mature and developing mouse cerebellum as revealed by an olfactory marker protein-lacZ transgene. J Comp Neurol 404:97–113

    Article  CAS  PubMed  Google Scholar 

  • Oberdick J, Schilling K, Smeyne RJ, Corbin JG, Bocchiaro C, Morgan JI (1993) Control of segment-like patterns of gene expression in the mouse cerebellum. Neuron 10:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Ozol K, Hawkes R (1997) Calbindin organization in the newborn mouse cerebellum: genealogical analysis of Purkinje cell compartments. Soc Neurosci Abstr 23:19

    Google Scholar 

  • Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol 412:95–111

    Article  CAS  PubMed  Google Scholar 

  • Sekerkova G, Ilijic E, Mugnaini E (2004) Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in rat. J Comp Neurol 470:221–239

    Article  PubMed  Google Scholar 

  • Serapide MF, Cicirata F, Sotelo C, Panto MR, Parenti R (1994) The pontocerebellar projection: longitudinal zonal distribution of fibers from discrete regions of the pontine nuclei to vermal and parafloccular cortices in the rat. Brain Res 644:175–180

    Article  CAS  PubMed  Google Scholar 

  • Smeyne RJ, Oberdick J, Schilling K, Berberi AS, Mugnaini E, Morgan JI (1991) Dynamic organization of developing Purkinje cells revealed by transgene expression. Science 254:719–721

    CAS  PubMed  Google Scholar 

  • Snider RS, Stowell A (1944) Receiving areas of the tactile, auditory and visual systems in the cerebellum. J Neurphysiol 7:331–357

    Google Scholar 

  • Sotelo C, Wassef M (1991) Cerebellar development: afferent organization and Purkinje cell heterogeneity. Phil Trans R Soc Lond B 331:307–313

    CAS  Google Scholar 

  • Takacs J, Víg J, Vastagh Cs, Hámori J (2003) Effect of 5-bromo-2′-deoxyuridine (BrdU) on the postnatal development of cerebellum. In: Sixth IBRO World Congress of Neuroscience, July 10–15, Prague, Abstracts, p 144

  • Takagi M, Zee DS, Tamargo RJ (2000) Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol 84:2047–2062

    Google Scholar 

  • Takagi M, Tamargo R, Zee DS (2003) Effects of lesions of the oculomotor vermis on eye movements in primate: binocular control. Prog Brain Res 142:19–33

    PubMed  Google Scholar 

  • Thier P, Dicke PW, Haas R, Thielert CD, Catz N (2002) The role of the oculomotor vermis in the control of saccadic eye movements. Cerebellum: recent developments in cerebellar research. Ann NY Acad Sci 978:50–62

    PubMed  Google Scholar 

  • Tolbert DL, Gutting JC (1997) Quantitative analysis of cuneocerebellar projections in rats: differential topography in the anterior and posterior lobes. Neuroscience 80:359–371

    Article  CAS  PubMed  Google Scholar 

  • Uzman LL (1960) The histogenesis of the mouse cerebellum as studied by its tritiated thymidine uptake. J Comp Neurol 114:137–159

    Article  CAS  PubMed  Google Scholar 

  • Vogel MW, Fan H, Mariani J (2000) Purkinje cell numbers are increased from early postnatal ages in NSE73a Bcl-2 overexpressing transgenic mice: a stereological study. Soc Neurosci Abstr 26:599

    Google Scholar 

  • Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21:370–375

    Article  CAS  PubMed  Google Scholar 

  • Wassef M, Zanetta JP, Brehier A, Sotelo C (1985) Transient biochemical compartmentalization of Purkinje-cells during early cerebellar development. Dev Biol 111:129–137

    Article  CAS  PubMed  Google Scholar 

  • Wassef M, Angaut P, Arsenio-Nunes L, Bourrat F, Sotelo C (1992) Purkinje cell heterogenity: its role in organizing the topography of the cerebellar cortex connections. In: Llinas R, Sotelo C (eds) The cerebellum revisited. Springer-Verlag, New York Heidelberg Berlin, pp 5–21

    Google Scholar 

  • West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14:275–285

    Google Scholar 

  • West MJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    CAS  PubMed  Google Scholar 

  • Whitlock DG (1952) A neurohistological and neurophysiological study of afferent fiber tracts and receptive areas of the avian cerebellum. J Comp Neurol 97:567–635

    Article  CAS  PubMed  Google Scholar 

  • Yuasa S, Kawamura K, Ono K, Yamakuni T, Takahashi Y (1991) Development and migration of Purkinje cells in the mouse cerebellar primordium. Anat Embryol Berl 184:195–212

    CAS  PubMed  Google Scholar 

  • Zanjani HS, Vogel MW, Delhaye-Boucheaud N, Martinou JC, Mariani J (1996) Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl-2 transgene. J Comp Neurol 374:332–334

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by OTKA grants T 026037, T 035259 and M 028337. Csaba Vastagh and Julianna Víg would like to express their thanks to Prof. Dr. Robert Gabriel and the Biology Graduate School of the University of Pécs, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Takács.

Additional information

Cs. Vastagh and J. Víg contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vastagh, C., Víg, J., Hámori, J. et al. Delayed postnatal settlement of cerebellar Purkinje cells in vermal lobules VI and VII of the mouse. Anat Embryol 209, 471–484 (2005). https://doi.org/10.1007/s00429-005-0458-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0458-x

Keywords

Navigation