Skip to main content

Advertisement

Log in

Fine ultrastructure of chromaffin granules in rat adrenal medulla indicative of a vesicle-mediated secretory process

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Observation by transmission electron microscopy, coupled with morphometric analysis and estimation procedure, revealed unique ultrastructural features in 25.94% of noradrenaline (NA)-containing granules and 16.85% of adrenaline (A)-containing granules in the rat adrenal medulla. These consisted of evaginations of the granule limiting membrane to form budding structures having different morphology and extension. In 14.8% of NA granules and 12.0% of A granules, outpouches were relatively short, looked like small blebs emerging from the granule surface and generally contained electron-dense material. A proportion of 11.2% of NA granules and 4.9% of A granules revealed the most striking ultrastructural features. These secretory organelles presented thin, elongated, tail-like or stem-like appendages, which were variably filled by chromaffin substance and terminated with spherical expansions of different electron density. A cohort of vesicles of variable size (30–150 nm in diameter) and content was found either close to them or in the intergranular cytosol. Examination of adrenal medullary cells fixed by zinc iodide–osmium tetroxide (ZIO) revealed fine electron dense precipitates in chromaffin granules, budding structures as well as cytoplasmic vesicles. These data indicate that a common constituent is revealed by the ZIO histochemical reaction in chromaffin cells. As catecholic compounds are the main tissue targets of ZIO complexes, catecholamines are good candidates to be responsible for the observed ZIO reactivity. This study adds further to the hypothesis that release of secretory material from chromaffin granules may be accomplished by a vesiclular transport mechanism typical of piecemeal degranulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Lami F (1969) Light and electron microscopy of the adrenal medulla of Macaca mulatta monkey. Anat Rec 164:317–332

    Article  PubMed  CAS  Google Scholar 

  • Al-Lami F, Carmichael SW (1991) Microscopic anatomy of the baboon (Papio hamadryas) adrenal medulla. J Anat 178:213–221

    PubMed  CAS  Google Scholar 

  • Artalejo CR, Elhamdani A, Palfrey HC (1990) Dense-core vesicles can kiss-and-run too. Curr Biol 8:R62–R65

    Article  Google Scholar 

  • Aunis D (1998) Exocytosis in chromaffin cells of the adrenal medulla. Int Rev Cytol 181:213–320

    PubMed  CAS  Google Scholar 

  • Aunis D, Langley K (1999) Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla. Acta Physiol Scand 167:89–97

    Article  PubMed  CAS  Google Scholar 

  • Brooks JC, Carmichael SW (1987) Ultrastructural demonstration of exocytosis in intact and saponin-permeabilized cultured chromaffin cells. Am J Anat 178:85–89

    Article  PubMed  CAS  Google Scholar 

  • Bunn SJ, Marley PD, Livett BG (1988) The distribution of opioid binding subtypes in the bovine adrenal medulla. Neuroscience 27:1081–1094

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD (1991) Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta 1071:174–202

    PubMed  CAS  Google Scholar 

  • Carmichael SW (1987) Morphology and innervation of the adrenal medulla. In: Rosenheck K, Lelkes PI (eds) Stimulus-secretion coupling in chromaffin cells. CRC Press, Boca Raton, pp 1–29

    Google Scholar 

  • Carmichael SW, Brooks JC, Malhotra RK, Wakade TD, Wakade AR (1989) Ultrastructural demonstration of exocytosis in the intact rat adrenal medulla. J Electron Microsc Technol 12:316–322

    Article  CAS  Google Scholar 

  • Champy C (1913) Granules et substances réduisant l’iodure d’osmium. J Anat (Paris) 49:323–343

    Google Scholar 

  • Choi AY, Cahill AL, Perry BD, Perlman RL (1993) Histamine evokes greater increases in phosphatidylinositol metabolism and catecholamine secretion in epinephrine-containing than in norepinephrine-containing chromaffin cells. J Neurochem 61:541–549

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall RE, Lekan HA (1996) Methods for determining number of cells and synapses: a case for more uniform standards of reviews. J Comp Neurol 364:6–15

    Article  PubMed  CAS  Google Scholar 

  • Coupland RE (1965a) The natural history of the chromaffin cells. Longmans, London

    Google Scholar 

  • Coupland RE (1965b) Electron microscopic observations on the structure of the rat adrenal medulla. I. The ultrastructure and organization of chromaffin cells in the normal adrenal medulla. J Anat 99:231–254

    PubMed  CAS  Google Scholar 

  • Coupland RE, Weakley BS (1968) Developing chromaffin tissue in the rabbit: an electron microscopic study. J Anat 102:425–455

    PubMed  CAS  Google Scholar 

  • Crivellato E, Ribatti D, Mallardi F, Beltrami CA (2002) Granule changes of human and murine endocrine cells in the gastro-intestinal epithelia are characteristic of piecemeal degranulation. Anat Rec 268:353–359

    Article  PubMed  Google Scholar 

  • Crivellato E, Nico B, Perissin L, Ribatti D (2003a) Ultrastructural morphology of adrenal chromaffin cells indicative of a process of piecemeal degranulation. Anat Rec 270:103–108

    Article  Google Scholar 

  • Crivellato E, Nico B, Mallardi F, Beltrami CA, Ribatti D (2003b) Piecemeal degranulation as a general secretory mechanism? Anat Rec 274:778–784

    Article  Google Scholar 

  • Crivellato E, Belloni A, Nico B, Nussdorfer GG, Ribatti D (2004) Chromaffin granules in the rat adrenal medulla release their secretory content in a particulate fashion. Anat Rec 277:204–208

    Article  Google Scholar 

  • Crivellato E, Finato N, Ribatti D, Beltrami CA (2005) Piecemeal degranulation in human tumour pheochromocytes. J Anat 206:47–53

    Article  PubMed  Google Scholar 

  • Douglas WW, Poisner AM (1965) Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature 208:1102–1103

    Article  PubMed  CAS  Google Scholar 

  • Dvorak AM (1991) Basophil and mast cell degranulation and recovery. In: Harris JR (ed) Blood cell biochemistry, vol 4. Plenum, New York, pp 340–377

  • Edwards SL, Anderson CR, Southwell BR, McAllen RM (1996) Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience 70:825–832

    Article  PubMed  CAS  Google Scholar 

  • Fesce R, Grohovaz F, Valtorta F, Meldolesi J (1994) Neurotransmitter release: fusion or “kiss-and-run? Trends Cell Biol 4:1–4

    Article  PubMed  CAS  Google Scholar 

  • Hillarp NA (1959) On the histochemical demonstration of adrenergic nerves with the osmic acid–sodium iodide technique. Acta Anat 38:379–384

    Article  PubMed  CAS  Google Scholar 

  • Holroyd P, Lang T, Wenzel D, De Camilli P, Jahn R (2002) Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc Natl Acad Sci USA 99:16806–16811

    Article  PubMed  CAS  Google Scholar 

  • Jabonero V, Fabra L, Moya J, Jabonero RM (1961) Resultados del metodo acido osmico-ioduro de cinc para la demonstration de los elementos nerviosos perifericos. Trab Inst Cajal 53:123–170

    CAS  Google Scholar 

  • Kasai H (1999) Comparative biology of Ca+2-dependent exocytosis: implication of kinetic diversity for secretory function. Trends Neurosci 22:88–93

    Article  PubMed  CAS  Google Scholar 

  • Koval LM, Yavorskaya EN, Lukyanetz EA (2001) Electron microscopic evidence for multiple types of secretory vesicles in bovine chromaffin cells. Gen Comp Endocrinol 121:261–277

    Article  PubMed  CAS  Google Scholar 

  • Langley K, Grant NJ (1999) Molecular markers of sympathoadrenal cells. Cell Tissue Res 298:185–206

    Article  PubMed  CAS  Google Scholar 

  • Leon C, Grant NJ, Aunis D, Langley OK (1992) L1 cell adhesion molecule is expressed by noradrenergic but not adrenergic chromaffin cells: a possible major role for L1 in adrenal medullary design. Eur J Neurosci 4:201–209

    Article  PubMed  Google Scholar 

  • Lomax RB, Michelena P, Nunez L, Garcia-Sancho J, Garcia AG, Montiel C (1997) Different contribution of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am J Physiol 272:C476–C484

    PubMed  CAS  Google Scholar 

  • Maillet M (1963) Le reactif au tetroxide d’osmium–iodure du zinc. Z Mikrosk Anat Forsch 70:397–425

    PubMed  CAS  Google Scholar 

  • Mallardi F, Crivellato E, Fusaroli P (1985) Modification of the original technique of Champy: a simple procedure for staining melanocytes. Basic Appl Histochem 29:81–84

    PubMed  CAS  Google Scholar 

  • Malosio ML, Giordano T, Laslop A, Meldolesi J (2004) Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype. J Cell Sci 117:743–749

    Article  PubMed  CAS  Google Scholar 

  • Marcussen N (1992) The double disector: unbiased stereological estimation of the number of particles inside other particles. J Microsc 165:417–426

    PubMed  CAS  Google Scholar 

  • Marley PD, Bunn SJ, Wan DC, Allen AM, Mendelsohn FA (1989) Localization of angiotensin II binding sites in the bovine adrenal medulla using a labelled specific antagonist. Neuroscience 28:777–787

    Article  PubMed  CAS  Google Scholar 

  • Palfrey HC, Artalejo AR (2003) Secretion: kiss and run caught on film. Curr Biol 13:R397–R399

    Article  PubMed  CAS  Google Scholar 

  • Rhodin JAG (1975) An atlas of histology. Oxford University Press, London, p 263

    Google Scholar 

  • Russ JC, Dehoff DT (1999) Practical stereology, 2nd edn. Plenum, New York

    Google Scholar 

  • Ryan TA (2003) Kiss-and-run, fuse-pinch-and-linger, fuse-and-collapse: the life and times of a neurosecretory granule. Proc Natl Acad Sci USA 100:2171–2173

    Article  PubMed  CAS  Google Scholar 

  • Scalet M, Crivellato E, Mallardi F (1989) Demonstration of phenolic compounds in plant tissues by an osmium–iodide postfixation procedure. Stain Technol 64:273–280

    PubMed  CAS  Google Scholar 

  • Silver RB, Pappas GD (2005) Secretion without membrane fusion: porocytosis. Anat Rec 282B:18–37

    Article  CAS  Google Scholar 

  • Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci USA 100:2070–2075

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Reetz AC, De Camilli P (1994) A role for synaptic vesicles in non-neuronal cells: clues from pancreatic β cells and from chromaffin cells. FASEB J 8:209–216

    PubMed  CAS  Google Scholar 

  • Tsuboi T, Rutter GA (2003) Multiple forms of “kiss-and-run” exocytosis revealed by evanescent wave microscopy. Curr Biol 13:563–567

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER (1979) Stereological methods, vol 1. Academic Press, London

  • Winkler H (1993) The adrenal chromaffin granule: a model for large dense core vesicles of endocrine and nervous tissue. J Anat 183:237–252

    PubMed  CAS  Google Scholar 

  • Winkler H, Carmichael SW (1982) The chromaffin granule. In: Poisner A, Trifarò JM (eds) The secretory granule. Elsevier North-Holland Biomedical Press, Amsterdam, pp 3–79

    Google Scholar 

Download references

Acknowledgements

This work was supported by local funds from Ministero dell’Istruzione, dell’Università e della Ricerca, Rome, to the Department of Medical and Morphological Research, Anatomy Section, University of Udine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Crivellato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crivellato, E., Guidolin, D., Nico, B. et al. Fine ultrastructure of chromaffin granules in rat adrenal medulla indicative of a vesicle-mediated secretory process. Anat Embryol 211, 79–86 (2006). https://doi.org/10.1007/s00429-005-0059-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0059-8

Keywords

Navigation