Skip to main content

Advertisement

Log in

In vitro immunoblockade of VIP inhibits the proliferation of pituitary prolactin cells

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

VIP is a peptide synthesised in the pituitary gland and is involved in the stimulation of prolactin secretion. However, to date it has not been determined whether VIP is able to regulate the proliferation of pituitary prolactin-producing cells, like other factors involved in the regulation of prolactin such as estradiol or dopamine. The aim of the present study was to address whether VIP is involved in regulating the proliferation of pituitary prolactin-secreting cells. Thus, we performed an in vitro study on monolayer cultures of rat pituitary cells, neutralising the possible paracrine effect of VIP by immunoblockade of the peptide and later determining the degree of proliferation of prolactin-secreting cells. The effects of immunoblockade were validated by determining the levels of VIP in the culture media, which were decreased (P<0.01), and modifications in the patterns of the immunohistochemical reaction to prolactin-positive cells. Immunoblockade of VIP decreased the proliferation of pituitary prolactin-positive cells at all antibody concentrations analysed, mainly between 3 and 12 h (P<0.01). Moreover, immunoblockade decreased the sizes of the cellular and nuclear areas, except at 1 h, at which point it only decreased the nuclear area of prolactin-positive cells. The results obtained suggest that—in the same way as it regulates the secretion of the hormone—VIP could be involved in regulating the proliferation of prolactin cells, like estradiol or dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnaout MA, Garthwaite TL, Martinson DR, Hagen TC (1986) Vasoactive intestinal polypeptide is synthesized in anterior pituitary tissue. Endocrinology 119:2052–2057

    PubMed  CAS  Google Scholar 

  • Asano K, Kubo O, Tajika Y, Huang MC, Takakura K (1996) The relationship between cell proliferation activity and secretory activity in pituitary adenoma, a review of 63 cases. No To Shinkei 48:543–549

    PubMed  CAS  Google Scholar 

  • Banerjee SK, De A, Sarkar DK (1994) Colocalization of prolactin and proliferating cell nuclear antigen in the anterior pituitary during estrogen-induced pituitary tumours. Cancer Lett 87:139–144

    Article  PubMed  CAS  Google Scholar 

  • Beauvillain JC, Mazzuca M, Dubois MP (1977) The prolactin and growth hormone producing cells of the guinea pig pituitary. Cell Tissue Res 184:343–358

    Article  PubMed  CAS  Google Scholar 

  • Berkvens JM, Van Nesselrooy JHJ, Kroes R (1980) Spontaneous tumors in the pituitary gland of old Wistar rats. A morphological and immunocytochemical study. J Pathol 130:179–191

    Google Scholar 

  • Byrne JM, Jones PM, Hill SF, Bennet WM, Gathei MA, Bloom SR (1992) Expression of messenger ribonucleic acids encoding neuropeptide-Y, substance-P, and vasoactive intestinal polypetide in human pituitary. J Clin Endocrinol Metab 75:983–987

    Article  PubMed  CAS  Google Scholar 

  • Carbajo E, Montegi M, Watanabe YG (1989) Cell proliferation in the anterior pituitary on mice during growth. Biomed Res 10:275–281

    Google Scholar 

  • Carbajo-Pérez E, Watanabe YG (1990) Cellular proliferation in the anterior pituitary of the rat during the postnatal period. Cell Tissue Res 261:333–338

    Article  PubMed  Google Scholar 

  • Carretero J, Sánchez F, Blanco E, Riesco JM, Sánchez-Franco F, Vázquez R (1989). Morphofunctional study of mammotropic cells following intraventricular administration of met-enkephalin. Anat Embryol 179:243–250

    Article  PubMed  CAS  Google Scholar 

  • Carretero J, Sánchez F, Blanco E, Riesco JM, González R, Vázquez R (1991) Estrogenic modulation of met-enkephalin-induced prolactin secretion in rats. Anat Embryol 183:455–459

    Article  PubMed  CAS  Google Scholar 

  • Carretero J, Sánchez F, Rubio M, Lorenzo MJ, Francos M, Cacicedo L, Sánchez-Franco F, Vázquez R (1992) Immunocytochemical evidence of hypothalamic regulation of adenopituitary VIP in the male rat. Neuropeptides 23:239–243

    Article  PubMed  CAS  Google Scholar 

  • Carretero J, Sánchez F, Rubio M, Francos CM, Blanco J, Vázquez R (1994) In vitro and in vivo evidence for direct dopaminergic inhibition of VIP-immunoreactive pituitary cells. Neuropeptides 27:1–6

    Article  PubMed  CAS  Google Scholar 

  • Carretero J, Rubio M, Sánchez F, Vázquez RJ, Santos M, Blanco E, Vázquez R (1995a). In vitro morphometric and proliferative variations in VIP-immunoreactive pituitary cells induced by estradiol. Neuroendocrinology 62:277–282

    PubMed  CAS  Google Scholar 

  • Carretero J, Rubio M, Navarro N, Prieto P, Vázquez RJ, Sánchez F, Vázquez R (1995b) In vitro modifications in the proliferation rate of prolactin cells are accompanied by nuclear morphometric variations. Histol Histopathol 10:135–139

    PubMed  CAS  Google Scholar 

  • Carretero J, Vázquez RJ, Santos M, Cacicedo L, Rubio M, Sánchez-Franco F, Vázquez R (1996) Dopamine inhibits in vitro release of VIP and proliferation of VIP-immunoreactive pituitary cells. Neuropeptides 30:81–86

    Article  PubMed  CAS  Google Scholar 

  • Carretero J, Rubio M, Vázquez-Perfecto RJ, Sánchez F, Torres JL, Pérez RM, Vázquez R (1997a) Decreases in the size and proliferation rate of VIP-immunoreactive cells induced in vitro by testosterone are associated with decreases in VIP release. Neuroendocrinology 65:173–178

    PubMed  CAS  Google Scholar 

  • Carretero J, Rubio M, Sánchez F, Cabo JJ, Vázquez RJ, Santos M, Pérez RM, Vázquez R (1997b) Corticosterone induces hypoactivity of prolactin-immunoreactive cells. Acta Anat 160:15–20

    PubMed  CAS  Google Scholar 

  • Carretero J, Vázquez RJ, Sánchez F, Rubio M, Santos M, Vázquez G, Martín-Clavijo A, Vázquez R (1998) Inverse effects of estradiol and testosterone on the in vitro proliferation rate of rat VIP-immunoreactive pituitary cells. Eur J Anat 2:101–108

    Google Scholar 

  • Carretero J, Vázquez G, Blanco E, Rubio M, Santos M, Martín-Clavijo A, Torres JL, Vázquez R (1999a) Immunohistochemical evidence of the presence of aromatase P450 in the rat pituitary gland. Cell Tissue Res 295:419–423

    Article  PubMed  CAS  Google Scholar 

  • Carretero J, Martín-Clavijo A, Vázquez G, Somalo J, Rubio M, Sánchez F, Hernández E, Montero MC, Torres JL, Vázquez R (1999b) Effects of in vitro immunosupression of interleukin-6 on the proliferation of rat pituitary cells. Eur J Anat 3:137–143

    Google Scholar 

  • Carrillo AJ, Pool TB, Sharp ZD (1985) Vasoactive intestinal peptide increases prolactin messenger ribonucleic acid content in GH3 cells. Neuroendocrinology 116:202–206

    CAS  Google Scholar 

  • Denef C, Baes M, Schramme C (1986) Paracrine interactions in the anterior pituitary: Role in the regulation of prolactin and growth hormone secretion. In: Ganong WF, Martini L (eds) Frontiers in Neuroendocrinology, vol 9. Raven Press, New York, pp 115–148

  • Fernandez M, Sanchez-Franco F, Palacios N, Sanchez I, Villuendas G, Cacicedo L (2003) Involvement of vasoactive intestinal peptide on insulin-like growth factor I-induced proliferation of rat pituitary lactotropes in primary culture: evidence for an autocrine and/or paracrine regulatory system. Neuroendocrinology 77:341–352

    Article  PubMed  CAS  Google Scholar 

  • Hagen TC, Arnaout MA, Scherzer WJ, Martinson DR, Garthwaite TL (1986) Antisera to vasoactive intestinal polypeptide inhibits basal prolactin release from dispersed anterior pituitary cells. Neuroendocrinology 43:641–645

    PubMed  CAS  Google Scholar 

  • Harbuz MS, Stephanou A, Sarlis N, Lightman SL (1992) The effects of recombinant human interleukin (IL)-1 alpha, IL-1 beta or IL-6 on hypothalamo-pituitary-adrenal axis activation. J Endocrinol 133:349–355

    PubMed  CAS  Google Scholar 

  • Herbert DC, Ishikawa H, Rennels EG (1979) Evidence for the autoregulation of hormone secretion by prolactin. Endocrinology 104:97–100

    PubMed  CAS  Google Scholar 

  • Hunt TE (1943) Mitotic activity in the anterior pituitary gland of female rats of different age groups and at different periods of the day. Endocrinology 32:334–339

    Google Scholar 

  • Kakeya T, Takeuchi S, Takahashi S (2000) Epidermal growth factor, insulin, and estrogen stimulate development of prolactin-secreting cells in cultures of GH3 cells. Cell Tissue Res 299:237–243

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Iwasaki Y, Iwasaki J, Abe H, Yanaihara N, Imura H (1978) Prolactin release by vasoactive intestinal polypeptide in rats. Endocrinology 103:554–558

    PubMed  CAS  Google Scholar 

  • Lam KSL (1991) Vasoactive intestinal peptide in the hypothalamus and pituitary. Neuroendocrinology 53 (suppl):45–51

    PubMed  CAS  Google Scholar 

  • Lorenzo MJ, Sánchez-Franco F, De los Frailes MT, Reichlin S, Fernández G, Cacicedo L (1989) Synthesis and secretion of vasoactive intestinal peptide by rat fetal cerebral cortical and hypothalamic cells in culture. Endocrinology 125:1983–1990

    Article  PubMed  CAS  Google Scholar 

  • Nagy G, Mulchahey JJ, Neill JD (1988) Autocrine control of prolactin secretion by vasoactive intestinal peptide. Endocrinology 122:364–366

    Article  PubMed  CAS  Google Scholar 

  • Nogami H (1984) Fine-structural heterogeneity and morphologic changes in rat pituitary prolactin cells after estrogen and testosterone treatment. Cell Tissue Res 237:195–202

    Article  PubMed  CAS  Google Scholar 

  • Oishi Y, Okuda M, Takahashi H, Fujii T, Morii S (1993) Cellular proliferation in the pituitary gland of normal adult rats: influences of sex, estrous cycle, and circadian change. Anat Rec 235:111–120

    Article  PubMed  CAS  Google Scholar 

  • Ortman R, Pérez F Jr (1984) The effect of age, pairing, copulation, and 2-Br-α-ergocryptine in the male Mongolian gerbil on the prolactin cells in the anterior pituitary identified by immunocytochemical and Herlant’s tetrachrome methods. Anat Rec 208:411–420

    Article  PubMed  CAS  Google Scholar 

  • Peillón F, Le Dafniet M, Pagesy P, Yuan Li J, Benlot C, Brandi AM, Joubert D (1991) Neuropeptides of anterior pituitary origin. Path Res Pract 187:577–580

    PubMed  Google Scholar 

  • Pérez RL, Machiavelli GA, Romano MI, Burdman JA (1986) Prolactin release, oestrogens and proliferation of prolactin-secreting cells in the anterior pituitary gland of adult male rats. J Endocrinol 108:399–403

    PubMed  Google Scholar 

  • Phelps C (1986) Immunocytochemical analysis of prolactin cells in the adult rat adenopituitary gland: distribution and quantitation relative to sex and strain. Am J Anat 176:233–242

    Article  PubMed  CAS  Google Scholar 

  • Pomerat GR (1941) Mitotic activity in the pituitary of the white rat following castration. Am J Anat 69:89–121

    Article  Google Scholar 

  • Reifeld CW, Shin SH, Leather RA (1983) Extensive ultrastructural changes in rat mammotrophs following administration of the dopamine agonist ergocristine reflecting inhibition of prolactin release. Cell Tissue Res 232:249–256

    Article  PubMed  Google Scholar 

  • Robberechet W, Denef C (1989) Paracrine interactions in the anterior pituitary. In: Müller EE, MacLeod RM (eds) Neuroendocrine persperctives, vol 6. Springer, Berlin, Heidelberg, New York, pp17–25

  • Said SI, Porter JC (1979) Vasoactive intestinal polypeptide: release into pituitary portal blood. Life Sci 24:227–230

    Article  PubMed  CAS  Google Scholar 

  • Segerson TP, Lam KSL, Cacicedo L, Minamitani N, Fink JS, Lechan RM, Reichlin S (1989) Thyroid hormone regulates vasoactive intestinal peptide (VIP) mRNA levels in the rat anterior pituitary gland. Endocrinology 125:2221–2223

    PubMed  CAS  Google Scholar 

  • Spangelo BL, Judd AM, Isakson PC, MacLeod RM (1989) Interleukin-6 stimulates anterior pituitary hormone release in vitro. Endocrinology 125:575–577

    PubMed  CAS  Google Scholar 

  • Takahashi S, Kawashima S (1982) Age related changes in prolactin cell percentage and serum prolactin levels in intact and neonatally gonadectomized male and female rats. Acta Anat 113:211–217

    Article  PubMed  CAS  Google Scholar 

  • Torres AI, Aoki A (1985) Subcellular compartmentation of prolactin in rat lactotrophs. J Endocrinol 105:219–225

    PubMed  CAS  Google Scholar 

  • Torres AI, Aoki A (1987) Release of big and small molecular forms of prolactin: dependence upon dynamic state of the lactotroph. J Endocrinol 114:213–220

    Article  PubMed  CAS  Google Scholar 

  • Vijayan E, Samson WK, Said SI, McCann SM (1979) Vasoactive intestinal peptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone and prolactin in conscious ovarietcomized rats. Endocrinology 104:53–57

    PubMed  CAS  Google Scholar 

  • Zhou-Li F, Joly-Pharaboz MO, Bouillard B, Albadalejo E, Nicolas B, Andre J (1991) Multihormonal control of cell proliferation: opposite effects of two stimulators (17β-estradiol and L-triiodothyronine) and one inhibitor (dexamethasone) on F4Z2 pituitary tumor cells. Endocrinology 128:2761–2768

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the FIS Spanish program N° PI0-21803.

The authors would like to thank Dr. Sánchez-Franco (Service of Endocrinology, INIC Carlos III, Madrid, Spain) for his kind supply of rabbit anti-VIP serum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carretero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carretero, J., Angoso, M., Rubio, M. et al. In vitro immunoblockade of VIP inhibits the proliferation of pituitary prolactin cells. Anat Embryol 211, 11–18 (2006). https://doi.org/10.1007/s00429-005-0058-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0058-9

Keywords

Navigation