Skip to main content
Log in

Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Fish larval development, not least the spectacular process of flatfish metamorphosis, appears to be under complex endocrine control, many aspects of which are still not fully elucidated. In order to obtain data on the functional development of two major endocrine glands, the pituitary and the thyroid, during flatfish metamorphosis, histology, immunohistochemistry and in situ hybridization techniques were applied on larvae of the Atlantic halibut (Hippoglossus hippoglossus), a large, marine flatfish species, from hatching through metamorphosis. The material was obtained from a commercial hatchery. Larval age is defined as day-degrees (D°=accumulated daily temperature from hatching). Sporadic thyroid follicles are first detected in larvae at 142 D° (27 days post-hatch), prior to the completion of yolk sack absorption. Both the number and activity of the follicles increase markedly after yolk sack absorption and continue to do so during subsequent development. The larval triiodothyronine (T3) and thyroxine (T4) content increases, subsequent to yolk absorption, and coincides with the proliferation of thyroid follicles. A second increase of both T3 and T4 occurs around the start of metamorphosis and the T3 content further increases at the metamorphic climax. Overall, the T3 content is lower than T4. The pituitary gland can first be distinguished as a separate organ at the yolk sack stage. During subsequent development, the gland becomes more elongated and differentiates into neurohypophysis (NH), pars distalis (PD) and pars intermedia (PI). The first sporadic endocrine pituitary cells are observed at the yolk sack stage, somatotrophs (growth hormone producing cells) and somatolactotrophs (somatolactin producing cells) are first observed at 121 D° (23 days post-hatch), and lactotrophs (prolactin producing cells) at 134 D° (25 days post-hatch). Scarce thyrotrophs are evident after detection of the first thyroid follicles (142 D°), but coincident with a phase in which follicle number and activity increase (260 D°). The somatotrophs are clustered in the medium ventral region of the PD, lactotrophs in the anterior part of the PD and somatolactotrophs are scattered in the mid and posterior region of the pituitary. At around 600 D°, coinciding with the start of metamorphosis, somatolactotrophs are restricted to the interdigitating tissue of the NH. During larval development, the pituitary endocrine cells become more numerous. The present data on thyroid development support the notion that thyroid hormones may play a significant role in Atlantic halibut metamorphosis. The time of appearance and the subsequent proliferation of pituitary somatotrophs, lactotrophs, somatolactotrophs and thyrotrophs indicate at which stages of larval development and metamorphosis these endocrine cells may start to play active regulatory roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayala AG, Villaplana M, Hernandez MPG, Pozo EC, Agulleiro B (2003) FSH-, LH-, and TSH-expressing cells during development of Sparus aurata L. (Teleostei). An immunocytochemical study. Gen Comp Endocrinol 134:72–79

    Article  PubMed  CAS  Google Scholar 

  • Ball JN, Baker BI (1969) The pituitary gland: anatomy and histophysiology. In: Hoar WS, Randall DJ (eds) Fish physiology, II. Academic, New York, NY, pp 1–205

    Google Scholar 

  • Batten TFC, Ingleton PM (1986) The hypothalamus and the pituitary gland. In: Chester-Jones I, Ingleton PM, Phillips JG (eds) Fundamentals of comparative vertebrate endocrinology. Plenum Press, New York, NY, pp 285–408

    Google Scholar 

  • Björnsson BTh (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 17:9–24

    Article  Google Scholar 

  • Björnsson BTh, Halldorsson O, Haux C, Norberg B, Brown CL (1998) Photoperiod control of sexual maturation of the Atlantic halibut (Hippoglossus hippoglossus): plasma thyroid hormone and calcium levels. Aquaculture 166:117–140

    Article  Google Scholar 

  • Björnsson BTh, Johansson V, Benedet S, Einarsdóttir IE, Hildahl J, Agustsson T, Jonsson E (2002) Growth hormone endocrinology of salmonids: regulatory mechanisms and mode of action. Fish Physiol Biochem 27:227–242

    Article  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268

    Article  PubMed  CAS  Google Scholar 

  • Brent GA (1994) The molecular basis of thyroid hormone action. N Engl J Med 331:847–853

    Article  PubMed  CAS  Google Scholar 

  • Brown CL, Kim BG (1995) Combined application of cortisol and triiodothyronine in the culture of larval marine finfish. Aquaculture 135:79–86

    Article  CAS  Google Scholar 

  • Brown CL, Doroshov SI, Nunez JM, Hadley C, Vaneenennaam J, Nishioka RS, Bern HA (1988) Maternal triiodothyronine injections cause increases in swimbladder inflation and survival rates in larval striped bass, Morone saxatilis. J Exp Zool 248:168–176

    Article  CAS  Google Scholar 

  • Brown DD (1997) The role of thyroid hormone in zebrafish and axolotl development. Proc Natl Acad Sci USA 94:13011–13016

    Article  PubMed  CAS  Google Scholar 

  • Buckbinder L, Brown DD (1993) Expression of the Xenopus laevis prolactin and thyrotropin genes during metamorphosis. Proc Natl Acad Sci USA 90:3820–3824

    Article  PubMed  CAS  Google Scholar 

  • Cambre M, Mareels G, Corneillie S, Moons L, Ollevier F, Vandesande F (1990) Chronological appearance of the different hypophysial hormones in the pituitary of sea bass larvae (Dicentrarchus labrax) during their early development: an immunocytochemical demonstration. Gen Comp Endocrinol 77:408–415

    Article  PubMed  CAS  Google Scholar 

  • Chapman SC, Sawitzke AL, Campbell DS, Schoenwolf GC (2005) A three-dimensional atlas of pituitary gland development in the zebrafish. J Comp Neurol 487:428–440

    Article  PubMed  Google Scholar 

  • Clemons GK, Nicoll CS (1977) Effects of antisera to bullfrog prolactin and growth hormone on metamorphosis of Rana catesbeiana tadpoles. Gen Comp Endocrinol 31:495–497

    Article  PubMed  CAS  Google Scholar 

  • Cleveland R, Wolfe J (1932) A differential stain for the anterior lobe of the hypophysis. Anat Rec 51:409–413

    Article  Google Scholar 

  • Company R, Astola A, Pendon C, Valdivia MM, Perez-Sanchez J (2001) Somatotropic regulation of fish growth and adiposity: growth hormone (GH) and somatolactin (SL) relationship. Comp Biochem Physiol C 130:435–445

    Article  CAS  Google Scholar 

  • Dales S, Hoar WS (1954) Effects of thyroxine and thiourea on the development of chum salmon (Oncorhynchus keta). Can J Zool 32:244–251

    Article  CAS  Google Scholar 

  • de Jesus EG, Hirano T, Inui Y (1994) The antimetamorphic effect of prolactin in the Japanese flounder. Gen Comp Endocrinol 93:44–50

    Article  PubMed  Google Scholar 

  • de Jesus EGT, Toledo JD, Simpas MS (1998) Thyroid hormones promote early metamorphosis in grouper (Epinephelus coioides) larvae. Gen Comp Endocrinol 112:10–16

    Article  PubMed  Google Scholar 

  • Deane EE, Woo NYS (2003) Ontogeny of thyroid hormones, cortisol, hsp70 and hsp90 during silver sea bream larval development. Life Sci 72:805–818

    Article  PubMed  CAS  Google Scholar 

  • Derby A, Etkin W (1968) Thyroxine-induced tail resorption in vitro as affected by anterior pituitary hormones. J Exp Zool 169:1–6

    Article  PubMed  CAS  Google Scholar 

  • Dodd MHI, Dodd JM (1976) The biology of metamorphosis. In: Lofts B (ed) Physiology of the amphibia, III. Academic, New York, NY, pp 467–599

    Google Scholar 

  • Einarsdóttir IE, Sakata S, Björnsson BTh (2002) Atlantic halibut growth hormone: structure and plasma levels of sexually mature males and females during photoperiod-regulated annual cycles. Gen Comp Endocrinol 127:94–104

    Article  PubMed  CAS  Google Scholar 

  • Forsyth IA, Wallis M (2002) Growth hormone and prolactin molecular and functional evolution. J Mammary Gland Biol Neoplasia 7:291–312

    Article  PubMed  Google Scholar 

  • Fukamachi S, Sugimoto M, Mitani H, Shima A (2004) Somatolactin selectively regulates proliferation and morphogenesis of neural-crest derived pigment cells in medaka. Proc Natl Acad Sci USA 101:10661–10666

    Article  PubMed  CAS  Google Scholar 

  • Glasgow E, Karavanov AA, Dawid IB (1997) Neuronal and neuroendocrine expression of lim3, a LIM class homeobox gene, is altered in mutant zebrafish with axial signaling defects. Dev Biol 192:405–419

    Article  PubMed  CAS  Google Scholar 

  • Grandi G, Chicca M (2004) Early development of the pituitary gland in Acipenser naccarii (Chondrostei, Acipenseriformes): an immunocytochemical study. Anat Embryol 208:311–321

    Article  PubMed  CAS  Google Scholar 

  • Grandi G, Colombo G, Chicca M (2003) Immunocytochemical studies on the pituitary gland of Anguilla anguilla L., in relation to early growth stages and diet-induced sex differentiation. Gen Comp Endocrinol 131:66–76

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt M, Brown CL, Lee M, Dauder S, Bern HA (1989) Changes in thyroid hormone levels in eggs and larvae and in iodide uptake by eggs of coho and chinook salmon, Oncorhynchus kisutch and Oncorhynchus tschawytscha. Fish Physiol Biochem 6:261–278

    Article  CAS  Google Scholar 

  • Gutt J (1985) The growth of juvenile flounders (Platichthys flesus) at salinities of 0, 5, 15 and 35 percentages. Zeitsch Angew Ichthyol 1:17–26

    Google Scholar 

  • Hadley ME (1992) Endocrinology. Prentice-Hall International, London

    Google Scholar 

  • Herzog W, Zeng XC, Lele Z, Sonntag C, Ting JW, Chang CY, Hammerschmidt M (2003) Adenohypophysis formation in the zebrafish and its dependence on Sonic hedgehog. Dev Biol 254:36–49

    Article  PubMed  CAS  Google Scholar 

  • Huang HC, Brown DD (2000a) Prolactin is not a juvenile hormone in Xenopus laevis metamorphosis. Proc Natl Acad Sci USA 97:195–199

    Article  PubMed  CAS  Google Scholar 

  • Huang HC, Brown DD (2000b) Overexpression of Xenopus laevis growth hormone stimulates growth of tadpoles and frogs. Proc Natl Acad Sci USA 97:190–194

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Specker JL (1994) Growth hormone- and prolactin-producing cells in the pituitary gland of striped bass (Morone saxatilis): immunocytochemical characterization at different life stages. Gen Comp Endocrinol 94:225–236

    Article  PubMed  CAS  Google Scholar 

  • Inui Y, Miwa S (1985) Thyroid hormone induces metamorphosis of flounder larvae. Gen Comp Endocrinol 60:450–454

    Article  PubMed  CAS  Google Scholar 

  • Kakizawa S, Kaneko T, Hasegawa S, Hirano T (1993) Activation of somatolactin cells in the pituitary of the rainbow trout Oncorhynchus mykiss by low environmental calcium. Gen Comp Endocrinol 91:298–306

    Article  PubMed  CAS  Google Scholar 

  • Kakizawa S, Ishimatsu A, Takeda T, Kaneko T, Hirano T (1997) Possible involvement of somatolactin in the regulation of plasma bicarbonate for the compensation of acidosis in rainbow trout. J Exp Biol 200:2675–2683

    PubMed  CAS  Google Scholar 

  • Kobuke L, Specker JL, Bern HA (1987) Thyroxine content of eggs and larvae of coho salmon, Oncorhynchus kisutch. J Exp Zool 242:89–94

    Article  CAS  Google Scholar 

  • Koibuchi N, Chin MW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–128

    Article  PubMed  CAS  Google Scholar 

  • Laiz-Carrion R, Segura-Noguera MD, del Rio MDM, Mancera JM (2003) Ontogeny of adenohypophyseal cells in the pituitary of the American shad (Alosa sapidissima). Gen Comp Endocrinol 132:454–464

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn L, Nowell MA, Ramsurn VP, Wigham T, Sweeney GE, Kristjánsson B, Halldórsson Ó (1999) Molecular cloning and developmental expression of the halibut thyroid hormone receptor-a. J Fish Biol 55:148–155

    CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schuetz G, Umesono K, Blumnberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  PubMed  CAS  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    Article  CAS  Google Scholar 

  • Miwa S, Inui Y (1987a) Effects of various doses of thyroxine and triiodothyronine on the metamorphosis of flounder (Paralichthys olivaceus). Gen Comp Endocrinol 67:356–363

    Article  PubMed  CAS  Google Scholar 

  • Miwa S, Inui Y (1987b) Histological changes in the pituitary–thyroid axis during spontaneous and artificially-induced metamorphosis of larvae of the flounder Paralichthys olivaceus. Cell Tissue Res 249:117–123

    Article  CAS  Google Scholar 

  • Naito N, de Jesus EGT, Nakai Y, Hirano T (1993) Ontogeny of pituitary cell types and the hypothalamo–hypophysial relationship during early development of chum salmon, Oncorhynchus keta. Cell Tissue Res 272:429–437

    Article  Google Scholar 

  • Norris DO (ed) (1997) Vertebrate endocrinology. Academic, San Diego, CA

  • Okimoto DK, Weber GM, Grau EG (1993) The effects of thyroxine and propylthiouracil treatment on changes in body form associated with a possible developmental thyroxine surge during posthatching development of the tilapia, Oreochromis mossambicus. Zool Sci 10:803–811

    CAS  Google Scholar 

  • Olsen Y, Evjemo JO, Olsen A (1999) Status of the cultivation technology for production of Atlantic halibut (Hippoglossus hippoglossus) juveniles in Norway/Europe. Aquaculture 176:3–13

    Article  Google Scholar 

  • Ono M, Takayama Y, Rand-Weaver M, Sakata S, Yasunaga T, Noso T, Kawauchi H (1990) Complementary DNA cloning of somatolactin, a pituitary protein related to growth hormone and prolactin. Proc Natl Acad Sci USA 87:4330–4334

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer JH, Schwartz HL (1997) Molecular basis of thyroid hormone dependent brain development. Endocrinol Rev 18:462–475

    Article  CAS  Google Scholar 

  • Ozaki Y, Okumura H, Kazeto Y, Ikeuchi T, Ijiri S, Nagae M, Adachi S, Yamauchi K (2000) Developmental changes in pituitary–thyroid axis, and formation of gonads in leptocephali and glass eels of Anguilla spp. Fish Sci 66:1115–1122

    Article  CAS  Google Scholar 

  • Pandolfi M, Paz DA, Maggese C, Ravaglia M, Vissio P (2001) Ontogeny of immunoreactive somatolactin, prolactin and growth hormone secretory cells in the developing pituitary gland of Cichlasoma dimerus (Teleostei, Perciformes). Anat Embryol 203:461–468

    Article  PubMed  CAS  Google Scholar 

  • Perez-Sanchez J (2000) The involvement of growth hormone in growth regulation, energy homeostasis and immune function in the gilthead sea bream (Sparus aurata): a short review. Fish Physiol Biochem 22:135–144

    Article  CAS  Google Scholar 

  • Peter RE, Marchant TA (1995) The endocrinology of growth in carp and related species. Aquaculture 129:299–321

    Article  CAS  Google Scholar 

  • Power DM (1992) Immunocytochemical identification of growth hormone, prolactin, and gonadotropin cells in the pituitary of male plaice (Pleuronectes platessa) during gonadal maturation. Gen Comp Endocrinol 85:358–366

    Article  PubMed  CAS  Google Scholar 

  • Power DM, Canario AVM (1992) Immunocytochemistry of somatotrophs, gonadotrophs, prolactin and adrenocorticotropin cells in larval sea bream (Sparus auratus) pituitaries. Cell Tissue Res 269:341–346

    Article  PubMed  CAS  Google Scholar 

  • Power DM, Llewellyn L, Faustino M, Nowell MA, Björnsson BTh, Einarsdóttir IE, Canario AVM, Sweeney GE (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol C 130:447–459

    Article  CAS  Google Scholar 

  • Reddy PK, Lam TJ (1992) Effect of thyroid hormones on morphogenesis and growth of larvae and fry of telescopic-eye black goldfish, Carassius auratus. Aquaculture 107:383–394

    Article  CAS  Google Scholar 

  • Renfro JL (1997) Hormonal regulation of renal inorganic phosphate transport in the winter flounder, Pleuronectes americanus. Fish Physiol Biochem 17:377–383

    Article  CAS  Google Scholar 

  • Rotllant J, Worthington GP, Fuentes J, Guerreiro PM, Teitsma CA, Ingleton PM, Balment RJ, Canario AVM, Power DM (2003) Determination of tissue and plasma concentrations of PTHrP in fish: development and validation of a radioimmunoassay using a teleost 1–34 N-terminal peptide. Gen Comp Endocrinol 133:146–153

    Article  PubMed  CAS  Google Scholar 

  • Saele O, Solbakken JS, Watanabe K, Hamre K, Power D, Pittman K (2004) Staging of Atlantic halibut (Hippoglossus hippoglossus L.) from first feeding through metamorphosis, including cranial ossification independent of eye migration. Aquaculture 239:445–465

    Article  Google Scholar 

  • Saga T, Oota Y, Nozaki M, Swanson P (1993) Salmonid pituitary gonadotrophs. III. Chronological appearance of GTH I and other adenohypophysial hormones in the pituitary of the developing rainbow trout (Oncorhynchus mykiss irideus). Gen Comp Endocrinol 92:233–241

    Article  PubMed  CAS  Google Scholar 

  • Saga T, Yamaki K, Doi Y, Yoshizuka M (1999) Chronological study of the appearance of adenohypophysial cells in the ayu (Plecoglossus altivelis). Anat Embryol 200:469–475

    Article  PubMed  CAS  Google Scholar 

  • Santos CRA, Cavaco JEB, Ingleton PM, Power DM (2003) Developmental ontogeny of prolactin and prolactin receptor in the sea bream (Sparus aurata). Gen Comp Endocrinol 132:304–314

    Article  PubMed  CAS  Google Scholar 

  • Sbrogna JL, Barresi MJF, Karlstrom RO (2003) Multiple roles for Hedgehog signaling in zebrafish pituitary development. Dev Biol 254:19–35

    Article  PubMed  CAS  Google Scholar 

  • Schreiber AM, Specker JL (1998) Metamorphosis in the summer flounder (Paralichthys dentatus): stage-specific developmental response to altered thyroid status. Gen Comp Endocrinol 111:156–166

    Article  PubMed  CAS  Google Scholar 

  • Shi YB, Wong J, PuzianowskaKuznicka M, Stolow MA (1996) Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptors. Bioessays 18:391–399

    Article  PubMed  CAS  Google Scholar 

  • Solbakken JS, Norberg B, Watanabe K, Pittman K (1999) Thyroxine as a mediator of metamorphosis of Atlantic halibut, Hippoglossus hippoglossus. Environ Biol Fish 56:53–65

    Article  Google Scholar 

  • Tagawa M, Hirano T (1987) Presence of thyroxine in eggs and changes in its content during early development of chum salmon, Oncorhynchus keta. Gen Comp Endocrinol 68:129–135

    Article  PubMed  CAS  Google Scholar 

  • Tagawa M, Miwa S, Inui Y, DeJesus EG, Hirano T (1990a) Changes in thyroid hormone concentrations during early development and metamorphosis of the flounder, Paralichthys olivaceus. Zool Sci 7:93–96

    CAS  Google Scholar 

  • Tagawa M, Tanaka M, Matsumoto S, Hirano T (1990b) Thyroid hormones in eggs of various fresh water, marine and diadromous teleosts and their changes during egg development. Fish Physiol Biochem 8:515–520

    Article  CAS  Google Scholar 

  • Takada M, Kasai M (2003) Growth hormone is a weaker candidate than prolactin for the hormone responsible for the development of a larval-type feature in cultured bullfrog skin. J Exp Biol 206:1137–1142

    Article  PubMed  Google Scholar 

  • Tanaka M, Tanangonan JB, Tagawa M, deJesus EGT, Nishida H, Isaka M, Kimura R, Hirano T (1995) Development of the pituitary, thyroid and interrenal glands and applications of endocrinology to the improved rearing of marine fish larvae. Aquaculture 135:111–126

    Article  Google Scholar 

  • Tata JR, Kawahara A, Baker BS (1991) Prolactin inhibits both thyroid hormone-induced morphogenesis and cell-death in cultured amphibian larval tissues. Dev Biol 146:72–80

    Article  PubMed  CAS  Google Scholar 

  • Tata JR, Baker BS, Machuca I, Rabelo EML, Yamauchi K (1993) Autoinduction of nuclear receptor genes and its significance. J Steroid Biochem Mol Biol 46:105–119

    Article  PubMed  CAS  Google Scholar 

  • Villaplana M, Ayala AG, Hernandez MPG, Agulleiro B (1997) Ontogeny of immunoreactive somatolactin cells in the pituitary of gilthead sea bream (Sparus aurata L, Teleostei). Anat Embryol 196:227–234

    Article  PubMed  CAS  Google Scholar 

  • Volckaert FAMa, Mugoyo JWM, Lescroart O, Grisez L, Ollevier F (1999) Immunohistochemically detected ontogeny of prolactin and growth hormone cells in the African catfish Clarias gariepinus. Comp Biochem Physiol 122:423–431

    Article  Google Scholar 

  • Wada T, Aritaki M, Tanaka M (2004) Effects of low-salinity on the growth and development of spotted halibut Verasper variegatus in the larva-juvenile transformation period with reference to pituitary prolactin and gill chloride cells responses. J Exp Mar Biol Ecol 308:113–126

    Article  CAS  Google Scholar 

  • Weltzien FA, Norberg B, Helvik JV, Andersen O, Swanson P, Andersson E (2003) Identification and localization of eight distinct hormone-producing cell types in the pituitary of male Atlantic halibut (Hippoglossus hippoglossus L.). Comp Biochem Physiol A 134:315–327

    Google Scholar 

  • Wu YF, Koenig RJ (2000) Gene regulation by thyroid hormone. Trends Endocrinol Metab 11:207–211

    Article  PubMed  CAS  Google Scholar 

  • Yadav BN (1995) The pituitary gland. In: Fish endocrinology. Daya Publishing House, Delhi, pp 24–60

  • Yamamoto K, Kikuyama S (1982) Effect of prolactin antiserum on growth and resorption of tadpole tail. Endocrinol Jpn 29:81–85

    PubMed  CAS  Google Scholar 

  • Zhu Y, Thomas P (1997) Effects of somatolactin on melanosome aggregation in the melanophores of red drum (Sciaenops ocellatus) scales. Gen Comp Endocrinol 105:127–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the projects “Endocrine Control as a Determinant of Larval Quality in Fish Aquaculture” (CT-96-1422) and “Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis” (Q5RS-2002-01192), with financial support from the Commission of the European Communities. However, it does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. This project was further supported by the Swedish Council for Agricultural and Forestry Research and Pluriannual funding to CCMAR by the Portuguese Science and Technology Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingibjörg Eir Einarsdóttir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einarsdóttir, I.E., Silva, N., Power, D.M. et al. Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut. Anat Embryol 211, 47–60 (2006). https://doi.org/10.1007/s00429-005-0055-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0055-z

Keywords

Navigation