Skip to main content
Log in

Ontogeny of the Thyroid Glands During Larval Development of South American Horned Frogs (Anura, Ceratophryidae)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The role of thyroid hormone (TH) in anuran metamorphosis has been documented from a variety of approaches, but the sequence of morpho-histological development of the thyroid glands that produce the secretion of the hormone was assumed invariant from studies of relatively few species even when the effects of environmental influences on larval development and metamorphosis have been largely documented. There are anurans in which developmental and growth rates diverge, and the resulting heterochrony in growth and development produces giant/miniature tadpoles, and or rapid/delayed metamorphosis suggesting changes of the activity of the thyroid glands during larval development. Herein, we analyze the morpho-histological variation of the thyroid glands in larval series of Ceratophrys cranwelli, Chacophrys pierottii, Lepidobatrachus laevis and L. llanensis that share breeding sites along semiarid environments of the Chaco in South America, belong to a monophyletic lineage, and present accelerated patterns in growth and development in order to have a morphological evidence about a possible shift of TH physiology. We describe gross morphology and histology of the thyroid glands and find features shared by all studied species such as the presence of supernumerary heterotopic follicles; changes in the volume and number of follicles towards the metamorphic climax, and cuboidal epithelia with occasional intra-cellular vacuoles as signs of low glandular activity without a manifest peak at the climax as it was assumed for anurans. We discuss different lines of evidence to interpret sources of extra supplement of TH to support the rapid metamorphosis. These interpretations highlight the necessity to design a research program to investigate the endocrine variation during development of ceratophryids taking in account their morphology, physiology and ecology in order to learn more about the effects of environmental and developmental interactions involved in the anuran evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bloom, S., Ledón-Rettig, C., Infante, C., Everly, A., Hanken, J., & Nascone-Yoder, N. (2013). Developmental origins of a novel gut morphology in frogs. Evolution and Development, 15(3), 213–223.

    Article  PubMed  Google Scholar 

  • Brande-Lavridsen, N., Christensen-Dalsgaard, J., & Korsgaard, B. I. (2010). Effects of ethinylestradiol and the fungicide prochloraz on metamorphosis and thyroid gland morphology in Rana temporaria. The Open Zoology Journal, 2010(3), 7–16.

    Article  Google Scholar 

  • Buchholz, D. R., & Hayes, T. (2005). Variation in thyroid hormone action and tissue content underlies species differences in the timing of metamorphosis in desert frogs. Evolution and Development, 7(5), 458–467.

    Article  CAS  PubMed  Google Scholar 

  • Callery, E. M., & Elinson, R. P. (2000). Thyroid hormone-dependent metamorphosis in a direct developing frog. Proceedings of the National Academy of Sciences, 97(6), 2615–2620.

    Article  CAS  Google Scholar 

  • Carroll, E. J., Seneviratne, A. M., & Ruibal, R. R. (1991). Gastric pepsin in an anuran larva. Development, Growth & Differentiation, 33(5), 499–507.

    Article  CAS  Google Scholar 

  • Denver, R. J. (2013). Neuroendocrinology of amphibian metamorphosis. Current Topics in Developmental Biology, 103, 195–227.

    Article  CAS  PubMed  Google Scholar 

  • Dodd, M. H. I., & Dodd, J. M. (1976). The biology of metamorphosis. In B. Lofts (Ed.), Physiology of the Amphibia (pp. 467–599). New York: Academic Press Inc.

    Chapter  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1986). Biology of Amphibians. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Etkin, W. (1936). The phenomena of the anuran metamorphosis. III. The development of the thyroid gland. Journal of Morphology, 59(1), 68–89.

    Article  Google Scholar 

  • Fabrezi, M. (2011). Heterochrony in growth and development in anurans from the Chaco of South America. Evolutionary Biology, 38(4), 390–411.

    Article  Google Scholar 

  • Fabrezi, M., & Lobo, F. J. (2009). Hyoid skeleton, related muscles, and morphological novelties in the frog Lepidobatrachus (Anura, Ceratophryidae). The Anatomical Record, 292, 1700–1712.

    Article  PubMed  Google Scholar 

  • Fabrezi, M., & Quinzio, S. I. (2008). Morphological evolution in Ceratophyinae frogs (Anura. Neobatrachia): The effects of heterochronic changes during larval development and metamorphosis. Zoological Journal of the Linnean Society, 2008(154), 752–780.

    Article  Google Scholar 

  • Faivovich, J., & Carrizo, G. R. (1992). Descripción de la larva de Chacophrys pierottii (Vellard, 1948) (Leptodactylidae, Ceratophryinae). Alytes, 10(3), 81–89.

    Google Scholar 

  • Fernandez-Mongil, M., Venza, C. J., Rivera, A., Dominicci, J. A., Burggren, W., & Rojas, L. V. (2009). Triiodothyronine (T3) action on aquatic locomotor behavior during metamorphosis of the bullfrog Rana catesbeiana. The International Journal of Developmental Biology, 53(1), 101–108.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fort, D. J., Degitz, S., Tietge, J., & Touart, L. W. (2007). The hypothalamic pituitary-thyroid (HPT) axis in frogs and its role in frog development and reproduction. Critical Reviews in Toxicology, 37, 117–161.

    Article  CAS  PubMed  Google Scholar 

  • Fox, H. (1966). Thyroid growth and its relationship to metamorphosis in Rana temporaria. Journal of Embryology and Experimental Morphology, 16(3), 487–496.

    CAS  PubMed  Google Scholar 

  • Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., et al. (2006). The amphibian tree of life. Bulletin of American Museum of Natural History, 297, 1–370.

    Article  Google Scholar 

  • Gomez-Mestre, I., & Buchholz, D. R. (2006). Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences, 103(5), 19021–19026.

    Article  CAS  Google Scholar 

  • Gomez-Mestre, I., Kulkarni, S., & Buchholz, D. R. (2013). Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying. PLoS ONE, 8(12), e84266.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gosner, K. (1960). A simplified table for staging anurans embryos and larvae, with notes on identification. Herpetologica, 16(3), 183–190.

    Google Scholar 

  • Gozzo, S., Taglioni, A., Casetti, R., Meloni, M., Bagnoli, C., & Monaco, V. (1996). Supernumerary thyroid glands of Pleurodeles waltl (Caudata, Salamandridae). Italian Journal of Zoology, 63(3), 207–214.

    Article  Google Scholar 

  • Grim, K. C., Wolfe, M., Braunbeck, T., Iguchi, T., Ohta, Y., Tooi, O., et al. (2009). Thyroid histopathology assessments for the amphibian metamorphosis assay to detect thyroid-active substances. Toxicologic Pathology, 37(4), 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Hanken, J. (1993). Model systems versus outgroups: Alternative approaches to the study of head development and evolution. American Zoologist, 33(4), 448–456.

    Google Scholar 

  • Hollar, A. R., Choi, J., Grimm, A. T., & Buchholz, D. R. (2011). Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate. General and Comparative Endocrinology, 173(2011), 190–198.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, H., Liquan, C., Remo, B. F., & Brown, D. D. (2001). Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis. Proceedings of the National Academy of Sciences, 98(13), 7348–7353.

    Article  CAS  Google Scholar 

  • Jennings, D. H., & Hanken, J. (1998). Mechanistic basis of life history evolution in anuran amphibians: thyroid gland development in the direct-developing frog, Eleutherodactylus coqui. General and Comparative Endocrinology, 111, 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Kerney, R., Wassersug, R., & Hall, B. K. (2009). Skeletal advance and arrest in giant non-metamorphosing African clawed frog tadpoles (Xenopus laevis: Daudin). Journal of Anatomy, 2009(20), 1–12.

    Google Scholar 

  • Kulkarni, S. S., Gomez-Mestre, I., Moskalik, C. L., Storz, B. L., & Buchholz, D. R. (2011). Evolutionary reduction of developmental plasticity in desert spadefoot toads. Journal of Evolutionary Biology, 24(2011), 2445–2455.

    Article  CAS  PubMed  Google Scholar 

  • Kupferberg, S. (1997). The role of larval diet in anuran metamorphosis. American Zoologist, 37(2), 146–159.

    CAS  Google Scholar 

  • Ledón-Rettig, C. C., & Pfennig, D. W. (2012). Antipredator behavior promotes diversification of feeding strategies. Integrative and Comparative Biology, 52(1), 53–63.

    Article  PubMed  Google Scholar 

  • Ledón-Rettig, C. C., Pfennig, D. W., & Crespi, E. J. (2009). Stress hormones and the fitness consequences associated with the transition to a novel diet in larval amphibians. Journal of Experimental Biology, 212, 3743–3750.

    Article  PubMed  Google Scholar 

  • Martoja, R., & Martoja-Pierson, M. (1970). Técnicas de histología Animal. Barcelona: Toray-Masson.

    Google Scholar 

  • Michael, M. I., & Al Adhami, M. A. (1974). The development of the thyroid glands in anuran amphibians of Iraq. Journal of Zoology, 1974(174), 315–323.

    Google Scholar 

  • Miranda, L. A., & Pisanó, A. (1996). Estudio morfométrico sobre el desarrollo y evolución de las glándulas tiroides durante la metamorfosis de Bufo arenarum. Cuadernos de herpetología, 10(1–2), 47–57.

    Google Scholar 

  • Morvan Dubois, G., Sebillot, A., Kuiper, G. G. J. M., Verhoelst, C. H. J., Darras, V. M., Visser, T. J., et al. (2014). Deiodinase activity is present in Xenopus laevis during early embryogenesis. Endocrinology, 147(10), 4941–4949.

    Article  Google Scholar 

  • Norris, D. O., & Carr, J. A. (2013). The hypothalamus–pituitarye–thyroid (HPT) axis of non-mammalian vertebrates. In D. O. Norris & J. A. Carr (Eds.), Vertebrate endocrinology (pp. 231–257). Waltham: Academic Press.

    Chapter  Google Scholar 

  • Opitz, R., Hartmann, S., Blank, T., Braunbeck, T., Lutz, I., & Kloas, W. (2006). Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles. Toxicological Sciences, 90(2), 337–348.

    Article  CAS  PubMed  Google Scholar 

  • Pfennig, D. W. (1992). Polyphenism in spadefoot toad tadpoles as locally adjusted evolutionarily stable strategy. Evolution, 46(3), 1408–1420.

    Article  Google Scholar 

  • Pfennig, D. W., Hudson, K. R., & Sherman, P. W. (1993). Kin recognition and cannibalism in spadefoot toad tadpoles. Animal Behavior, 1993(46), 87–94.

    Article  Google Scholar 

  • Pfenning, D. W. (1992). Proximal and functional causes of pholyphenism in an anuran tadpole. Functional Ecology, 1992(6), 167–174.

    Article  Google Scholar 

  • Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543–583.

    Article  PubMed  Google Scholar 

  • Quinzio, S. I., & Fabrezi, M. (2014). The lateral line system in anuran tadpoles: Neuromast morphology, arrangement and innervation. The Anatomical Record. doi:10.1002/ar.22952.

    PubMed  Google Scholar 

  • Quinzio, S., Fabrezi, M., & Faivovich, J. (2006). Redescription of the tadpole of Chacophrys pierottii (Vellard, 1948) (Anura, Ceratophryidae). South American Journal of Herpetology, 1(3), 202–209.

    Article  Google Scholar 

  • Roçek, Z., Böttcher, R., & Wassersug, R. (2006). Gigantism in the tadpoles of the Neogene frog Paleobatrachus. Paleobiology, 32(4), 666–675.

    Article  Google Scholar 

  • Rose, C. S. (2005). Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology & Evolution, 20(3), 129–135.

    Article  Google Scholar 

  • Rot-Nikcevic, I., & Wassersug, R. J. (2003). Tissue sensitivity to thyroid hormone in athyroid Xenopus laevis larvae. Development Growth Differentiation, 2003(45), 321–325.

    Article  Google Scholar 

  • Rot-Nikcevic, I., & Wassersug, R. J. (2004). Arrested development in Xenopus laevis tadpoles: How size constrains metamorphosis. The Journal of Experimental Biology, 207, 2133–2145.

    Article  PubMed  Google Scholar 

  • Ruibal, R. R., & Thomas, E. (1988). The obligate carnivorous larvae of the frog Lepidobatrachus laevis (Leptodactylidae). Copeia, 1988, 591–604.

    Article  Google Scholar 

  • Schreiber, A. M., Liquan, C., & Brown, D. D. (2005). Remodeling of the intestine during metamorphosis of Xenopus laevis. Proceedings of the National Academy of Sciences, 102(10), 3720–3725.

    Article  CAS  Google Scholar 

  • Smirnov, S. V., & Vassilieva, A. B. (2014). Thyroid hormones in the skeletogenesis and accessory sources of endogenous hormones in Xenopus laevis (Amphibia; Anura) ontogeny: Experimental evidence. Doklady Biological Sciences, 455(5), 136–138.

    Article  CAS  PubMed  Google Scholar 

  • Wassersug, R. J., & Heyer, W. R. (1988). A survey of internal oral features of Leptodactyloid larvae (Amphibia: Anura). Smithsonian Contributions to Zoology, 457, 1–96.

    Article  Google Scholar 

  • Weber, G. M., Farrar, E. S., Tom, C. K. F., & Grau, E. G. (1994). Changes in whole-body thyroxine and triiodothyronine concentrations and total content during early development and metamorphosis of the toad Bufo marinus. General and Comparative Endocrinology, 94, 62–71.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, C., Gomez-Mestre, I., & Wiens, J. J. (2014). Evolution of rapid development in spadefoot toad is unrelated to arid environments. PLoS ONE, 9(5). doi:10.1371/journal.pone.0096637.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for helpful criticisms on the manuscript and figures; John Reiss provided careful comments on an earlier draft of the manuscript and many suggestions on this English written; Javier Goldberg and Silvia Quinzio contributed with observations for a constructive discussion; Secretaría de Medio Ambiente y Desarrollo Sustentable, Provincia de Salta gave permissions to collect the specimens of this study. This research was supported by CONICET: PIP 239 and Agencia Nacional de Promoción Científica y Tecnológica: PICT-Bicentenario 0616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marissa Fabrezi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabrezi, M., Cruz, J.C. Ontogeny of the Thyroid Glands During Larval Development of South American Horned Frogs (Anura, Ceratophryidae). Evol Biol 41, 606–618 (2014). https://doi.org/10.1007/s11692-014-9292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-014-9292-5

Keywords

Navigation