Skip to main content
Log in

Intermediate filament immunohistochemistry of astroglial cells in the leopard gecko, Eublepharis macularius

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The distribution of intermediate filament molecular markers, glial fibrillary acidic protein (GFAP) and vimentin, has been studied in the central nervous system (CNS) of the adult leopard gecko, Eublepharis macularius. This immunohistochemical study points out the presence of different astroglial cell types. The main pattern is constituted by ependymal radial glia, which have their cell bodies located in the ependymal layer throughout the brain ventricular system. Radial glia proper or radial astrocytes show their cell bodies displaced from the ependymal layer into a periependymal zone and are observed only in the spinal cord. Star-shaped astrocytes are scarce. They are detected in the ventral and lateral regions of the diencephalon and mesencephalon, in the superficial layer of the optic tectum, in the ventral medulla oblongata, and in the ventral and lateral spinal cord. In the different regions of the CNS, the staining intensity appears not to be identical even in the same cellular type. The results reported in the present study show an heterogeneous feature of the astroglial pattern in E. macularius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams JC (1981) Heavy-metal intensification of DAB-based reaction product. J Histochem Cytochem 29:775

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Buskirk DR, Nottebohm F (1987) Monoclonal antibody reveals radial glia in adult avian brain. J Comp Neurol 264:159–170

    Article  PubMed  CAS  Google Scholar 

  • Bennett GS, Fellini SA, Holtzer H (1978) Immunofluorescent visualization of 100 A filaments in different cultured chick embryo cell types. Differentiation 12:71–82

    Article  PubMed  CAS  Google Scholar 

  • Bodega G, Suarez I, Rubio M, Fernandez B (1990) Distribution and characteristics of the different astroglial cell types in the adult lizard (Lacerta lepida) spinal cord. Anat Embryol 181:567–575

    Article  PubMed  CAS  Google Scholar 

  • Bodega G, Suarez I, Rubio M, Villaba RM, Fernandez B (1993) Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat Embryol 187:385–395

    Article  PubMed  CAS  Google Scholar 

  • Bodega G, Suárez I, Rubio M, Fernández B (1994) Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord. Histochemistry 102:113–122

    Article  PubMed  CAS  Google Scholar 

  • Cardone B, Roots BJ (1990) Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus and snail. Glia 3:180–192

    Article  PubMed  CAS  Google Scholar 

  • Chouaf L, Didier-Bazes M, Aguera M, Tardy M, Sallanon M, Kitahama K, Belin MF (1989) Comparative marker analysis of the ependymocytes in the subcommissural organ in four different mammalian species. Cell Tissue Res 257:255–262

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Bignami A (1973) Immunochemical and immunofluorescence studies of the GFAP in vertebrates. Brain Res 61:279–293

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Bignami A (1985) Intermediate filaments in nervous tissue. In: Shay JW (ed) Cell and muscle motility, vol 6. Plenum Press New York, pp 75–96

  • Dahl D, Crosby CJ, Sethi JS, Bignami A (1985) Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J Comp Neurol 239:75–88

    Article  PubMed  CAS  Google Scholar 

  • Ebner FF, Colonnier M (1975) Synaptic patterns in the visual cortex of turtle: an electron microscopic study. J Comp Neurol 160:51–80

    Article  PubMed  CAS  Google Scholar 

  • Elmquist JK, Swanson JJ, Sakaguchi DS, Ross LR, Jacobson CD (1994) Developmental distribution of GFAP and vimentin in the Brazilian opossum brain. J Comp Neurol 344:283–296

    Article  PubMed  CAS  Google Scholar 

  • Kalman M (1998) Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunocytochemical staining against glial fibrillary acidic protein (GFAP). Anat Embryol 198:409–433

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Pritz MB (2001) Glial fibrillary acidic protein-immunopositive structures in the brain of a crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. J Comp Neurol 431:460–480

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Szekely A, Csillag A (1993) Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the domestic chicken (Gallus domesticus). J Comp Neurol 330:221–237

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Kiss A, Majorossy K (1994) Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the red-eared freshwater turtle (Pseudemys scripta elegans). Anat Embryol 189:421–434

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Martin-Partido G, Hidalgo-Sanchez M, Majorossy K (1997) Distribution of glial fibrillary acidic protein–immunopositive structures in the developing brain of the turtle Mauremys leprosa. Anat Embryol 196:47–65

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Szekely AD, Csillag A (1998) Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol 198:213–235

    Article  PubMed  CAS  Google Scholar 

  • Lauro GM, Fonti R, Margotta V (1991) Phylogenetic evolution of intermediate filament associated proteins in ependymal cells of several adult poikilotherm vertebrates. J Hirnforsch 32:257–261

    PubMed  CAS  Google Scholar 

  • Lazzari M, Franceschini V (2001) Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of adult Podarcis sicula (Squamata, Lacertidae). J Anat 198:67–75

    Article  PubMed  CAS  Google Scholar 

  • Lazzari M, Franceschini V (2004) Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of the African lungfish, Protopterus annectens (Dipnoi: Lepidosirenidae). J Morphol 262:741–749

    Article  PubMed  CAS  Google Scholar 

  • Lazzari M, Franceschini V (2005) Astroglial Cells in the Central Nervous System of the Brown Anole Lizard, Anolis sagrei, revealed by Intermediate Filament Immunohistochemistry. J Morphol 265:325–334

    Article  PubMed  Google Scholar 

  • Lazzari M, Franceschini V, Ciani F (1997) Glial Fibrillary Acidic Protein and Vimentin in radial glia of Ambystoma mexicanum and Triturus carnifex: An immunocytochemical Study. J Brain Res 38:187–194

    CAS  Google Scholar 

  • Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840

    Article  PubMed  CAS  Google Scholar 

  • Miller RH, Liuzzi FJ (1986) Regional specialization of the radial glial cells of the adult frog spinal cord. J Neurocytol 15:187–196

    Article  PubMed  CAS  Google Scholar 

  • Monzon-Mayor M, Yanes C, Ghandour MS, De Barry J, Gombos G (1990) GFAP and vimentin immunohistochemistry in the adult and developing midbrain of the lizard Gallotia galloti. J Comp Neurol 295:569–579

    Article  PubMed  CAS  Google Scholar 

  • Monzon-Mayor M, Yanes C, De Barry J, Capdevilla-Carbonell C, Renau-Piqueras J, Tholey G, Gombos G (1998) Heterogeneous immunoreactivity in glial cells in the mesencephalon of a lizard: a double labelling immunohistochemical study. J Morphol 235:109–119

    Article  PubMed  CAS  Google Scholar 

  • Naujoks-Manteuffel C, Meyer DL (1996) Glial fibrillary acidic protein in the brain of the caecilian Typhlonectes natans (Amphibia, Gymnophiona): an immunocytochemical study. Cell Tissue Res 283:51–58

    CAS  Google Scholar 

  • Onteniente B, Kimura H, Maeda T (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol 215:427–436

    Article  PubMed  CAS  Google Scholar 

  • Oudega M, Marani E (1991) Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system. J Anat 179:97–114

    PubMed  CAS  Google Scholar 

  • Pixley SK, De Vellis J (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res 317:201–209

    PubMed  CAS  Google Scholar 

  • Pulido-Caballero J, Jiménez-Sampedro F, Echevarría-Aza D, Martínez-Millán L (1994) Postnatal development of vimentin-positive cells in the rabbit superior colliculus. J Comp Neurol 343:102–112

    Article  PubMed  CAS  Google Scholar 

  • Rubio M, Suarez I, Bodega G, Fernandez B (1992) Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the Iberian barb (Barbus comiza). Neurosci Lett 134:203–206

    Article  PubMed  CAS  Google Scholar 

  • Szaro BG, Gainer H (1988) Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system. Dev Brain Res 43:207–224

    Article  CAS  Google Scholar 

  • Tapscott SJ, Bennett GS, Toyama Y, Kleinbart F, Holtzer H (1981) Intermediate filament protein in the developing chick spinal cord. Dev Biol 86:40–54

    Article  PubMed  CAS  Google Scholar 

  • Voigt T (1989) Development of glial cells in the cerebral walls of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289:74–88

    Article  PubMed  CAS  Google Scholar 

  • Wasowicz M, Pierre J, Reperant J, Ward R, Vesselkin NP, Versaux-Botteri C (1994) Immunoreactivity to glial fibrillary acidic protein (GFAP) in the brain and spinal cord of the lamprey (Lampetra fluviatilis). J Brain Res 35:71–78

    CAS  Google Scholar 

  • Wicht H, Derouiche A, Korf H-W (1994) An immunocytochemical investigation of glial morphology in the Pacific hagfish: radial and astrocyte-like glia have the same phylogenetic age. J Neurocytol 23:565–576

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its retationship with Purkinje cells. Anat Sci Int 77:94–108

    Article  PubMed  Google Scholar 

  • Yamada T, Kawamata T, Walker DG, Mcgeer PL (1992) Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol 84:157–162

    Article  PubMed  CAS  Google Scholar 

  • Yanes C, Monzon-Mayor M, Ghandour MS, De Barry J, Gombos G (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J Comp Neurol 295:559–568

    Article  PubMed  CAS  Google Scholar 

  • Zamora AJ, Mutin M (1988) Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neuroscience 27:279–288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Ministero dell’Istruzione, dell’Università e della Ricerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Lazzari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzari, M., Franceschini, V. Intermediate filament immunohistochemistry of astroglial cells in the leopard gecko, Eublepharis macularius . Anat Embryol 210, 275–286 (2005). https://doi.org/10.1007/s00429-005-0049-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0049-x

Keywords

Navigation