Skip to main content
Log in

Morphofunctional ontogeny of the urinary system of the European sea bass Dicentrarchus labrax

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

European sea bass (Dicentrarchus labrax) are euryhaline fish that tolerate wide salinity fluctuations owing to several morphofunctional adaptations. Among the osmoregulatory sites (tegument, branchial chambers, digestive tract, urinary system), little is known about the kidney and the urinary bladder. The present study describes the ontogeny of the urinary system (kidney and urinary bladder) and focuses on the progressive expression of the Na+/K+-ATPase in the cells of these ion-transporting epithelia. A structural approach has shown that two pronephric urinary tubules are already present at hatching while the urinary bladder starts to differentiate. The glomus, an ultrafiltration site, occurs at day 5 (D5). The opisthonephros differentiates at D19/25 from the pronephric collecting tubules, then it rapidly grows longer and becomes folded. Na+/K+-ATPase immunolocalization and transmission electron microscopy show that ionocyte-like cells line the urinary tubules and the dorsal wall of the urinary bladder from D2/D5 on. Tubule ionocytes present a basolateral-localized fluorescence. Ionocytes of the collecting ducts and of the dorsal wall of the bladder present a fluorescence distributed in the whole cytoplasm. Fluorescence becomes stronger in later stages, suggesting a progressively increasing functionality of the urinary system in active ion transports. This observation is closely correlated with the ontogeny of osmoregulatory abilities. In juvenile and preadult fish kept in seawater, osmolality measurements demonstrate that urine is isotonic to blood. At low salinity, urine is hypotonic to blood in both stages. The capacity to produce hypotonic urine increases during ontogeny, a fact that suggests an increasing involvement of the urinary system in osmoregulation. The occurrence and the progressive functionality of the urinary system during the ontogeny, along with those of other osmoregulatory sites, are major adaptations allowing the sea bass to live in habitats of variable salinity such as lagoons and estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6
Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13
Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21
Fig. 22 Fig. 23 Fig. 24 Fig. 25 Fig. 26 Fig. 27 Fig. 28 Fig. 29 Fig. 30 Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Agarwal S, John PA (1988) Studies on the development of the kidney of the guppy, Lebistes reticulatus, part 1. The development of the pronephros. J Anim Morphol Physiol 35:17–24

    Google Scholar 

  • Alderdice DF (1988) Osmotic and ionic regulation in teleost eggs and larvae. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XIA. Academic Press, San Diego, pp 163–251

  • Barnabé G, Boulineau-Coatanea F, Rene F, Martin V (1976) Chronologie de la morphogenèse chez le loup ou bar Dicentrarchus labrax (L.) (Pisces, Serranidae) obtenu par reproduction artificielle. Aquaculture 8:351–363

    Article  Google Scholar 

  • Beyenbach KW (1986) Secretory NaCl and volume flow in renal tubules. Am J Physiol 250: R753-R763

    CAS  PubMed  Google Scholar 

  • Beyenbach KW (1995) Secretory electrolyte transport in renal proximal tubules of fish. In: Wood CM, Shuttleworth TJ (eds) Fish physiology, vol XIV. Academic Press, San Diego, pp 85–104

  • Beyenbach KW, Baustian MD (1989) Comparative physiology of the proximal tubule. From the perspective of aglomerular urine formation. In: Kinne RKH (ed) Structure and function of the kidney, vol I. Karger, Basel, pp 103–142

  • Beyenbach KW, Frömter E (1985) Electrophysiological evidence for Cl secretion in shark renal proximal tubules. Am J Physiol 248: F282-F295

    Google Scholar 

  • Beyenbach KW, Liu PLF (1996) Mechanism of fluid secretion common to aglomerular and glomerular kidneys. Kidney Int 49:1543–1548

    CAS  PubMed  Google Scholar 

  • Boeuf G, Lasserre P (1979) Aspects de la régulation osmotique chez le bar (Dicentrarchus labrax (L.) en élevage et introduit dans les lagunes aménagées de Certes, Bassin d’Arcachon (Gironde). In: Halver JE, Tiews K (eds) Colloque National “Ecotron.” Mécanismes et contrôle de la production biologique marine. CNEXO, Paris, pp 673–688

  • Charmantier G, Wolcott DL (2001) Introduction to the symposium: ontogenetic strategies of invertebrates in aquatic environments. Amer Zool 41:1053–1056

    Google Scholar 

  • Curtis BJ, Wood CM (1991) The function of the urinary bladder in vivo in the freshwater rainbow trout. J Exp Biol 155:567–583

    Google Scholar 

  • Dantzler WH (1992) Comparative aspects of renal function. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, 2nd edn. Raven Press, New York, pp 885–942

  • Dantzler WH (2003) Regulation of renal proximal and distal tubule transport: sodium, chloride and organic anions. Comp Biochem Physiol 136:A453–A478

    Google Scholar 

  • Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SCF, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655–4667

    CAS  PubMed  Google Scholar 

  • Elger M, Werner A, Herter P, Kohl B, Kinne RKH, Hentschel H (1998) Na-Pi cotransport sites in proximal tubule and collecting tubule of winter flounder (Pleuronectes americanus). Am J Physiol 274:F374–F383

    CAS  PubMed  Google Scholar 

  • Elger M, Hentschel H, Dawson M, Renfro JL (2000) Urinary tract. In: Ostrander GK (ed) The handbook of experimental animals. The laboratory fish. Academic Press, San Diego, pp 385–413

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652

    CAS  Google Scholar 

  • Greenwell MG, Sherrill J, Clayton LA (2003) Osmoregulation in fish. Mechanisms and clinical implications. Vet Clin Exot Anim 6:169–189

    Google Scholar 

  • Hentschel H, Elger M (1987) The distal nephron in the kidney of fishes. Adv Anat Embryol Cell Biol 108:1–151

    Google Scholar 

  • Hentschel H, Elger M (1989) Morphology of glomerular and aglomerular kidneys. In: Kinne RKH (ed) Structure and function of the kidney, vol I. Karger, Basel, pp 1–72

  • Hickman CP, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish physiology, vol I. Academic Press, New York, pp 91–239

  • Hiroi J, Kaneko T, Tanaka M (1999) In vivo sequential changes in chloride cell morphology in the yolk-sac membrane of Mozambique tilapia (Oreochromis mossambicus) embryos and larvae during seawater adaptation. J Exp Biol 202:3485–3495

    PubMed  Google Scholar 

  • Holliday FGT, Blaxter JHS (1960) The effects of salinity on the developing eggs and larvae of the herring. J Mar Biol Ass UK 39:591–603

    Google Scholar 

  • Holstvoogd C (1957) The postembryonic development of the pronephros in Clupea harengus L. Arch Néerl Zool 12:455–466

    Google Scholar 

  • Imsland AK, Gunnarsson S, Foss A, Stefansson SO (2003) Gill Na+, K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture 218:671–683

    Article  CAS  Google Scholar 

  • Jensen MK, Madsen SS, Kristiansen K (1998) Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J Exp Zool 282:290–300

    Article  CAS  PubMed  Google Scholar 

  • Johnson DW, Katavic I (1986) Survival and growth of sea bass (Dicentrarchus labrax) larvae as influenced by temperature, salinity, and delayed initial feeding. Aquaculture 52:11–19

    Article  Google Scholar 

  • Kelley DF (1988) The importance of estuaries for sea-bass, Dicentrarchus labrax (L.) J Fish Biol 33(suppl. A):25–33

  • Lahlou B (1967) Excrétion rénale chez un poisson euryhalin, le flêt (Platichthys flesus L.): caractéristiques de l’urine normale en eau douce et en eau de mer et effets des changements de milieu. Comp Biochem Physiol 20:925–938

    Article  CAS  Google Scholar 

  • Lahlou B, Henderson IW, Sawyer WH (1969) Renal adaptations by Opsanus tau, a euryhaline aglomerular teleost, to dilute media. Am J Physiol 216:1266–1272

    CAS  PubMed  Google Scholar 

  • Lasserre P (1971) Increase of (Na++K+)-dependent ATPase activity in gills and kidneys of two euryhaline marine teleosts, Crenimugil labrosus (Risso, 1826) and Dicentrarchus labrax (Linnaeus, 1758), during adaptation to fresh water. Life Sci 10:113–119

    Article  CAS  Google Scholar 

  • Loretz CA, Bern HA (1980) Ion transport by the urinary bladder of the gobiid teleost, Gillichthys mirabilis. Am J Physiol 239:R415–R423

    CAS  PubMed  Google Scholar 

  • Mancera JM, Perez-Figares JM, Fernandez-Llebrez P (1993) Osmoregulatory responses to abrupt salinity changes in the euryhaline gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol 106A:245–250

    Article  CAS  Google Scholar 

  • Marshall WS (1995) Transport processes in isolated teleost epithelia: opercular epithelium and urinary bladder. In: Wood CM, Shuttleworth TJ (eds) Fish physiology, vol XIV. Academic Press, San Diego, pp 1–23

  • Marshall WS, Bryson SE (1998) Transport mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. Comp Biochem Physiol 119A:97–106

    CAS  Google Scholar 

  • Marshall WS, Emberley TR, Singer TD, Bryson SE, McCormick SD (1999) Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus: a multivariable approach. J Exp Biol 202:1535–1544

    PubMed  Google Scholar 

  • Masini MA, Sturla M, Prato P, Uva B (2001) Ion transport systems in the kidney and urinary bladder of two Antarctic teleosts, Chionodraco hamatus and Trematomus bernacchii. Polar Biol 24:440–446

    Article  Google Scholar 

  • Mayahara H, Fujimoto K, Ando T, Ogawa K (1980) A new one-step method for the cytochemical localization of ouabain-sensitive, potassium-dependent p-nitrophenyl phosphatase activity. Histochemistry 67:125–138

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Kaneko T, Uchida S, Sasaki S, Takei Y (2002) Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney. Proc Natl Acad Sci USA 99:15782–15787

    Google Scholar 

  • Nishimura H, Imai M (1982) Control of renal function in freshwater and marine teleosts. Feder Proc 41:2355–2360

    CAS  Google Scholar 

  • Nishimura H, Imai M, Ogawa M (1983) Sodium chloride and water transport in the renal distal tubule of the rainbow trout. Am J Physiol 244:F247–F254

    CAS  PubMed  Google Scholar 

  • Petrova VG (1981) Electron microscopic study of the epithelium of distal nephron section and kidney tubules of fresh-water teleostean fishes. J Ichthyol 21:163–166

    Google Scholar 

  • Pickett GD, Pawson MG (1994) Sea bass: biology, exploitation and conservation. Chapman and Hall, London

    Google Scholar 

  • Rankin JC, Davenport J (1981) Animal osmoregulation. Blackie Press, Glasgow, pp 82–100

  • Renfro JL (1975) Water and ion transport by the urinary bladder of the teleost Pseudopleuronectes americanus. Am J Physiol 228:52–61

    CAS  PubMed  Google Scholar 

  • Schreiber AM (2001) Metamorphosis and early larval development of the flatfishes (Pleuronectiformes): an osmoregulatory perspective. Comp Biochem Physiol 129B:587–595

    CAS  Google Scholar 

  • Shiraishi K, Kaneko T, Hasegawa S, Hirano T (1997) Development of multicellular complexes of chloride cells in the yolk-sac membrane of tilapia (Oreochromis mossambicus) embryos and larvae in seawater. Cell Tissue Res 288:583–590

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Hatta N, Sugawara Y, Sato R (1978) Organogenesis and functional revelation of alimentary tract and kidney of chum salmon. Tohoku J Agricult Res 29:98–109

    Google Scholar 

  • Takeyasu K, Tamkun MM, Renaud KJ, Fambrough DM (1988) Ouabain sensitive (Na++K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding the α-subunit of an avian sodium pump. J Biol Chem 263:4347–4354

    CAS  PubMed  Google Scholar 

  • Tytler P (1988) Morphology of the pronephros of the juvenile brown trout, Salmo trutta. J Morphol 195:189–204

    CAS  PubMed  Google Scholar 

  • Tytler P, Ireland J, Fitches E (1996) A study of the structure and function of the pronephros in the larvae of the turbot (Scophthalmus maximus) and the herring (Clupea harengus). Mar Fresh Behav Physiol 28:3–18

    Google Scholar 

  • Varsamos S, Connes R, Diaz J-P, Barnabé G, Charmantier G (2001) Ontogeny of osmoregulation in the European sea bass Dicentrarchus labrax L. Mar Biol 138:909–915

    Article  Google Scholar 

  • Varsamos S, Diaz J-P, Charmantier G, Blasco C, Connes R, Flik G (2002a) Location and morphology of chloride cells during the post-embryonic development of the european sea bass, Dicentrarchus labrax. Anat Embryol 205:203–213

    Article  PubMed  Google Scholar 

  • Varsamos S, Diaz J-P, Charmantier G, Flik G, Blasco C, Connes R (2002b) Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J Exp Zool 293:12–26

    Article  CAS  PubMed  Google Scholar 

  • Wales W, Tytler P (1996) Changes in chloride cell distribution during early larval stages of Clupea harengus. J Fish Biol 49:801–814

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the hatchery team at Les Poissons du Soleil for providing the experimental fish. Thanks are also due to F. Aujoulat, R. Castille, E. Grousset, and J.-P. Selzner for their help. We extend our sincere thanks to the referees who provided valuable comments and suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Charmantier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nebel, C., Nègre-Sadargues, G., Blasco, C. et al. Morphofunctional ontogeny of the urinary system of the European sea bass Dicentrarchus labrax. Anat Embryol 209, 193–206 (2005). https://doi.org/10.1007/s00429-004-0438-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0438-6

Keywords

Navigation