Skip to main content

Advertisement

Log in

α1,4-N-Acetylglucosaminyltransferase encoding gene EXTL3 expression pattern in mouse adult and developing tissues with special attention to the pancreas

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

EXTL3 encodes α1,4-N-acetylglucosaminyltransferases I and II enzymes, which are involved in chain initiation and elongation of heparan sulfate (HS) biosynthesis. HS proteoglycans are critically involved in a variety of biological phenomena at various levels of complexity in adult and embryonic lives. Dedicated functions of HS proteoglycans are due to variable HS chains that interact with different cellular proteins, and can be regulated by their synthesizing enzymes. EXTL3 protein is also a putative receptor for Reg protein, a growth signal mediator for the β-cells of the pancreas. The present Northern blot analysis revealed two EXTL3 transcripts (6.2 and 3.4 kb), which were differentially expressed in different mouse adult tissues. The strongest expression was in the adult brain and pancreas. In the adult pancreas, a comparable intensity of both signals was detected. In the embryonic pancreas, the longer transcript was predominant, and showed a biphasic expression pattern with a peak at E11.5, whereas the shorter one showed a steady level of expression throughout the whole period of pancreatic development. By in situ hybridization, the acini of adults and embryos were strong positive for EXTL3 mRNA. Mature islets of Langerhans gave a weak signal, whereas the developing islets showed moderately positive reaction albeit less intense than the acini. In situ hybridization revealed a wide and differential expression pattern of EXTL3 mRNA in embryonic tissues. At the early stages, intense reaction was found in the developing neurons of the brain and spinal cord and in the epithelia of the developing GIT, pancreas, liver and kidney of embryos. Our data suggested that EXTL3 expression is developmentally regulated, and may contribute to the regulated production of HS in different adult and embryonic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–F
Fig. 3A–D
Fig. 4
Fig. 5A–F

Similar content being viewed by others

Abbreviations

EXT :

exostosin tumor

EXTL3 :

exostosin tumor like-3

RT-PCR:

reverse transcriptase polymerase chain reaction

SDS:

sodium dodecyl sulfate

References

  • Asundi VK, Keister BF, Stahl RC, Carey DJ (1997) Developmental and cell type specific expression of cell surface heparan sulfate proteoglycans in the rat heart. Exp Cell Res 230:145–153

    Article  CAS  PubMed  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    CAS  PubMed  Google Scholar 

  • Cohin NA, Kaufmann WE, Worley PF, Rupp F (1997) Expression of agrin in the developing and adult rat brain. Neuroscience 76:581–596

    Article  PubMed  Google Scholar 

  • David G, Bai XM, Van Der Schueren B, Marynen P, Cassiman J, Van Den Berghe H (1993) Spatial and temporal changes in the expression of fibroglycan (syndican-2) during mouse embryonic development. Development 119:841–854

    CAS  PubMed  Google Scholar 

  • Gould SE, Upholt WB, Kosher RA (1995) Characterization of chicken syndican-3 as a heparan sulfate proteoglycan and its expression during embryogenesis. Dev Biol 168:438–451

    Article  CAS  PubMed  Google Scholar 

  • Guimond S, Turner K, Kita M, Ford-Perriss M, Turnbull J (2001) Dynamic biosynthesis of heparan sulphate sequences in developing mouse brain: a potential regulatory mechanism during development. Biochem Soc Trans 2:177–181

    Article  Google Scholar 

  • Kalus I, Hodel A, Koch A, Kleene R, Edwardson M, Schrader M (2002) Interaction of syncollin with GP-2 the major membrane protein of pancreatic zymogen granules and association with lipid microdissection. Biochem J 362:433–442

    Article  CAS  PubMed  Google Scholar 

  • Kim BT, Kitagawa H, Tamura J, Saito T, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encodes α 1,4-N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc Natl Acad Sci USA 98:7176–7181

    Article  CAS  PubMed  Google Scholar 

  • Kim BT, Kitagawa H, Tamura J, Kusche-Gullberg M, Lindahl U, Sugahara K (2002) Demonstration of a novel gene DEXT3 of Drosophila melanogaster as the essential N-acetylglucosaminyltransferase in the heparan sulfate biosynthesis: chain initiation and chain elongation. J Biol Chem 277:13659–13665

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa H, Shimakawa H, Sugahara K (1999) The tumour suppressor EXT-like gene EXTL2 encodes an alpha 1,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J Biol Chem 274:13933–13937

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Akiyama T, Nata K, Abe M, Tajima M, Shervani NJ, Unno M, Matsuno S, Saski H, Takasawa S, Okamoto H (2000) Identification of a receptor for Reg (Regenerating gene) protein a pancreatic beta-cell regenerating factor. J Biol Chem 275:10723–10726

    Article  CAS  PubMed  Google Scholar 

  • Lander AD, Selleck SB (2000) The elusive functions of proteoglycans: in vivo veritas. J Cell Biol 148:227–232

    Article  CAS  PubMed  Google Scholar 

  • Le Bras S, Miralles F, Basmaciogullari A, Czernichow P, Scharfmann R (1996) Fibroblast growth factor 2 promotes pancreatic epithelial cell proliferation via functional fibroblast growth factor receptors during embryonic life. Diabetes 47:1236–1242

    Google Scholar 

  • Lin X, Perrimon N (2000) Role of heparan sulfate proteoglycans in cell-cell signaling in Drosophila. Matrix Biol 19:303–307

    Article  PubMed  Google Scholar 

  • Lin X, Gan L, Klein WH, Wells D (1998) Expression and functional analysis of mouse EXT1 a homologue of the human multiple exostosis type 1 gene. Biochem Biophys Res Commun 248:738–743

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Buff EM, Perrimon N, Michelson AM (1999) Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126:3715–3723

    CAS  PubMed  Google Scholar 

  • Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224:299–311

    CAS  PubMed  Google Scholar 

  • Lind T, Tufaro F, McCormick C, Lindaholt K (1998) The putative tumour suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparin sulfate. J Biol Chem 273:26265–26268

    Article  CAS  PubMed  Google Scholar 

  • McCormick C, Duncan G, Goutsos KT, Tufaro F (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA 97:668–673

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H (1999) The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic β-cells. J Hepatobiliary Pancreat Surg 6:254–262

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H, Takasawa S (2002) Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in beta-cells. Diabetes Suppl 3:S462–73

    Google Scholar 

  • Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–729

    Article  CAS  PubMed  Google Scholar 

  • Pictat R, Rutter W (1972) Development of embryonic pancreas. Handbook of physiology Williams, Baltimore, pp 25-66

  • Saito T, Seki N, Yamauchi M, Tsuji S, Hayashi A, Kozuma S, Hori T (1998) Structure, chromosomal localization and expression profile of EXTR1 and EXTR2 new members of the multiple exostoses gene family. Biochem Biophys Res Commun 243:61–66

    Article  CAS  PubMed  Google Scholar 

  • Salmivirta M, Lidholt K, Lindahl U (1996) Heparan sulfate: a piece of information. FASEB J 10:1270–1279

    CAS  PubMed  Google Scholar 

  • Schmidt K, Schrader M, Kern H, Kleene R (2001) Regulated apical secretion of zymogens in rat pancreas. J Biol Chem 276:14315–14323

    CAS  PubMed  Google Scholar 

  • Senay C, Lind T, Muguruma K, Tone Y, Kitagawa H, Sugahara K, Lidholt K, Lindahl U, Kusche-Gullberg M (2000) The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep 1:282–286

    Article  CAS  PubMed  Google Scholar 

  • Stickens D, Evans GA (1997) Isolation and characterization of the murine homologue of the human EXT2 multiple exostoses gene. Biochem Mol Med 61:16–21

    Article  CAS  PubMed  Google Scholar 

  • Stickens D, Clines G, Burbee D, Ramos P, Thomas S, Hogue D, Hecht JT, Lovett M, Evans GA (1996) The EXT2 multiple exostoses gene defines a family of putative tumor suppressor genes. Nat Genet 14:25–32

    CAS  PubMed  Google Scholar 

  • Stickens D, Brown D, Evans AG (2000) EXT genes are differentially expressed in bone and cartilage during mouse embryogenesis. Dev Dyn 218:452–464

    CAS  PubMed  Google Scholar 

  • Sugahara K, Kitagawa H (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10:518–527

    CAS  PubMed  Google Scholar 

  • Terazono K, Yamamoto H, Takasawa S, Shiga K, Yonemura Y, Tochino Y, Okamoto H (1988) A novel gene activated in regenerating islets. J Biol Chem 263:2111–2114

    CAS  PubMed  Google Scholar 

  • Unno M, Yonekura H, Nakagawara K, Watanabe T, Miyashita H, Moriizumi S, Okamoto H, Itoh T, Teraoka H (1993) Structure, chromosomal localization, and expression of mouse reg genes, reg I and reg II. A novel type of Reg gene, Reg II, exists in the mouse genome. J. Biol Chem 268:15974–15982

    CAS  PubMed  Google Scholar 

  • Van Hul W, Wuyts W, Hendrickx J, Speleman F, Wauters J, De Boulle K, Van Roy N, Bossuyt P, Willems PJ (1998) Identification of a third EXT-like gene (EXTL3) belonging to the EXT gene family. Genomics 47:230–237

    PubMed  Google Scholar 

  • Watanabe T, Yonekura H, Terazono K, Yamamoto H, Okamoto H (1990) Complete nucleotide sequence of human Reg gene and its expression in normal and tumoral tissues. The Reg protein, pancreatic stone protein, and pancreatic thread protein are one and the same product of the gene. J Biol Chem 265:7432–7439

    CAS  PubMed  Google Scholar 

  • Wise CA, Clines GA, Clines GA, Massa H, Trask BJ, Lovett M (1997) Identification and localization of the gene for EXTL a third member of the multiple exostoses gene family. Genome Res 7:10–16

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ms. Y. Takeda, Department of Anatomy, Shimane University, School of Medicine, Izumo, Japan, for her technical assistance, and Prof. Y. Kinoshita, Department of Internal Medicine, Shimane University, School of Medicine, Izumo, Japan, for information about Reg Receptor expression in the adult GIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noura M. S. Osman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, N.M.S., Kagohashi, Y., Udagawa, J. et al. α1,4-N-Acetylglucosaminyltransferase encoding gene EXTL3 expression pattern in mouse adult and developing tissues with special attention to the pancreas. Anat Embryol 207, 333–341 (2003). https://doi.org/10.1007/s00429-003-0348-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0348-z

Keywords

Navigation